Расчет трехшарнирной арки

Задача. В трехшарнирной арке параболического очертания определить внутренние силовые факторы в точках, взятых через 2 м по линии пролета.

2019-01-01_18-48-26

1. По уравнению, которое выражает геометрические очертания оси арки, вычисляем ординаты (уi) точек, а также соответствующие этим ординатам острые углы (αi) – это углы между нормалями к сечениям арки и горизонталью, а также тригонометрические функции этих углов – sinαi, cosαi.

Очертание арки параболическое, смотрим уравнение для оси арки — здесь.

Уравнение для параболы:

2019-01-01_18-51-09

Рассчитываем ординаты для всех точек.

Начало прямоугольной системы координат положим в т.А (левая опора), тогда хА=0, уА=0

2019-01-01_18-52-22

По найденным ординатам строим арку в масштабе.

Теперь определим углы и их тригонометрические функции.

Формула для параболы:

2019-01-01_18-53-37

Для точек А и В:

2019-01-01_18-56-03

Представим арку в виде простой балки и определим балочные опорные реакции (с индексом «0»).

2019-01-01_18-56-58

Распор Н определим из уравнения относительно т. С, используя свойство шарнира.

2019-01-01_18-57-57

Далее спроецируем все силы на ось Х.

2019-01-01_18-58-38

Таким образом, реакции арки:

2019-01-01_18-59-04

Для того, чтобы проверить правильность найденных реакций составим уравнение:

2019-01-01_18-59-51

  1. Определение поперечной силы Q по формуле:

2019-01-01_19-01-04

К примеру, для т. А:

2019-01-01_19-02-04

Определим балочные поперечные силы во всех сечениях:

2019-01-01_19-02-40

Тогда арочные поперечные силы:

2019-01-01_19-03-34

3.Определение изгибающих моментов в арке по формуле:

2019-01-01_19-04-17

Определим балочные изгибающие моменты:

2019-01-01_19-06-09

Тогда арочные изгибающие моменты:

2019-01-01_19-06-59

4.Определение продольных сил в арке по формуле:

2019-01-01_19-08-10

Строим эпюры внутренних силовых факторов.

Эпюры внутренних силовых факторов в арке

Эпюры внутренних силовых факторов в арке