Расчет статически определимой многопролетной балки

Статически определимые многопролетные шарнирно-консольные  балки (ШКБ).

Задача. Построить эпюры Q и M для статически определимой многопролетной балки (ШКБ).

2018-12-21_21-07-26

  1. Проверим статическую определимость балки по формуле: n=Соп-Ш-3

где n – степень статической определимости,

      Соп – количество неизвестных опорных реакций,

      Ш — количество шарниров,

      3 – количество уравнений статики.

Балка опирается на одну шарнирно неподвижную опору (2 опорные реакции) и на три шарнирно подвижных опоры (в каждой по одной опорной реакции). Таким образом: Соп = 2+3=5. Балка имеет два шарнира, значит, Ш=2

Тогда  n=5-2-3=0. Балка является статически определимой.

  1. Строим этажную схему балки, для этого заменяем шарниры шарнирно неподвижными опорами.

Шарнир – это место стыка балок, и, если посмотреть на балку с этой точки зрения, то многопролетную балку можно представить в виде трех отдельных балок.

Обозначим опоры на этажной схеме буквами.

2018-12-21_21-08-45

Балки, которые опираются только на свои опоры, называются основными. Балки, которые опираются на другие балки, называются  подвесными. Балка СD – основная, остальные – подвесные.

Расчет начинаем с балок верхних этажей, т.е. с подвесных. Влияние верхних этажей на нижние передается с помощью реакций с обратным знаком.

3. Расчет балок.

Каждую балку рассматриваем отдельно, строим для нее эпюры Q и М. Начинаем с подвесной балки АВ.

Определяем реакции RА, RВ.

2018-12-21_21-09-37

Наносим реакции на схему.

2018-12-21_21-10-24

Строим Эп Q методом сечений.

2018-12-21_21-23-14

 

Строим Эп М методом характерных точек.

В точке, где Q=0 на балке обозначим точку К – это точка, в которой М имеет экстремум. Определим положение т.К, для этого приравниваем уравнение для Q2 к 0, а размер z заменим на х.

2018-12-21_21-11-31

Рассмотрим еще одну подвесную балку – балку ЕР.

Балка ЕР относится к простым балкам, эпюры для которых известны.

2018-12-21_21-12-04

2018-12-21_21-13-44

 

 

 

Теперь рассчитываем основную балку СD. В точках В и Е передаем на балку СD с верхних этажей реакции RВ и RЕ, направленные в обратную сторону.

2018-12-21_21-15-12

Рассчитываем реакции балки СD.

2018-12-21_21-15-53

Наносим реакции на схему.

Строим эпюру Q методом сечений.

2018-12-21_21-16-45

Строим эпюру М методом характерных точек.

Точку L поставим дополнительно в середине левой консоли – она загружена равномерно распределенной нагрузкой, и для построения параболической кривой требуется дополнительная точка.

2018-12-21_21-17-44

Строим эпюру М.

Строим эпюры Q и М для всей многопролетной балки, при этом не допускаем переломов на эпюре М.  Задача решена.

2018-12-21_21-18-44