Построение эпюр внутренних силовых факторов в раме

Задача. Расчет рамы.  Для рамы построить эпюры продольных сил  N, поперечных сил Q и изгибающих моментов М.

2019-02-11_21-15-52

  1. Определим опорные реакции

2019-02-11_21-15-10

2019-02-11_21-20-49

Нанесем значения опорных реакций на расчетную схему.

2019-02-11_21-13-50

2. Строим эпюру продольных сил N методом сечений. Имеем три характерных участка и три сечения на них.

2019-02-11_21-24-39

Правило знаков продольных сил – продольная сила считается положительной, если сила растягивает стержень, и отрицательной, если сила сжимает стержень. Положительные значения откладываем влево от стойки и вверх от ригеля.

2019-02-11_21-26-20

Строим эпюру продольных сил.

2019-02-11_21-27-39

3. Строим эпюру поперечных сил Q методом сечений. Правило знаков – если сила относительно сечения направлена по часовой стрелке, то поперечная сила считается положительной и наоборот. Положительные значения откладываются влево от стоек и вверх от ригеля.

2019-02-11_21-29-28

 

Строим эпюру поперечных сил

2019-02-11_21-30-30

4. Строим эпюру изгибающих моментов М методом характерных точек. Расставляем точки: А – опора, В,С, — узлы рамы, D – свободный конец, К – середина равномерно распределенной нагрузки (точки экстремума при построении эп.Q не обнаружено). Эпюру М строим на сжатых волокнах (для машиностроительных специальностей), знак не ставим.

2019-02-11_21-32-40

Строим эпюру моментов.

2019-02-11_21-33-26

5. Вырезаем узлы С и В и проверяем их равновесие.

2019-02-11_21-34-33

Узлы находятся в равновесии, значит эпюры построены верно.

 

 

Проверочный и проектный расчеты при кручении

ЗадачаДля заданного стального бруса  d=50мм (материал – сталь Ст3)  построить эпюры крутящих моментов, углов поворота поперечных сечений. Проверить прочность бруса, если допускаемое касательное напряжение [τ]=30МПа. Подобрать для бруса кольцевое сечение при 2019-01-21_15-34-45 . Сравнить сечения по расходу материала.

2019-01-21_15-36-471.Расставляем сечения на характерных участках. Начинаем расчет от свободного конца бруса, рассматривая правую часть и отбрасывая оставшуюся левую часть с заделкой. Каждое сечение рассматриваем отдельно, определяя в нем значение крутящего момента.

2019-01-21_15-38-12

2019-01-21_15-39-04

Строим эпюру МК

2019-01-21_15-46-11

2.Строим эпюру углов поворота сечений. Углы поворота сечений определяем по формуле 2019-01-21_15-40-51

Расчет ведем по сечениям от неподвижного конца – стены А, в которой угол поворота равен нулю φА=0. В формуле обязательно следует учитывать знаки крутящих моментов.

Модуль сдвига для Ст3 G = 0,8·105 МПа = 0,8·108 кПа.

Определим полярный момент инерции для круглого сечения:

2019-01-21_15-42-50

Вычисляем углы поворота сечений — от стены А.

2019-01-21_15-44-10

Если требуется перейти к градусной мере, то:

2019-01-21_15-44-54

Далее вычисляем все последующие углы поворота, учитывая ранее найденные:

2019-01-21_15-48-08Строим эпюру φ

2019-01-21_15-49-33

3.Проверим прочность бруса по формуле 2019-01-21_15-50-37

Максимальный крутящий момент с эпюры МК = 0,75 кНм.

Определим полярный момент сопротивления сечения:

2019-01-21_15-52-10

Тогда2019-01-21_15-53-03 -прочность обеспечена.

4.Подбираем кольцевое сечение для вала с  2019-01-21_15-34-45.

Наружный диаметр кольца определим по формуле проектного расчета для кольцевого сечения:

2019-01-21_15-55-12

Тогда d = 0,8 · 60 = 48 мм.

Проверим прочность подобранного сечения. Полярный момент сопротивления для кольца:

2019-01-21_15-56-33Тогда2019-01-21_15-57-11-   прочность обеспечена.

5. Сравним варианты – круглое и кольцевое – по расходу материала

2019-01-21_15-58-182019-01-21_15-58-39

2019-01-21_16-05-45

В задаче площадь круглого вала А = 19,6 см2, а у кольцевого сечения (полого) А = 10,7 см2, что позволяет говорить об экономии материала почти в два раза. Т.о. брус (вал) кольцевого сечения экономичнее равнопрочного сплошного.

Объясняется это эпюрой касательных напряжений в сплошном брусе.

 

 

 

Расчет статически неопределимой стержневой системы

Задача. Определить напряжение в стальных стержнях, поддерживающих абсолютно жёсткую балку.  Материал — сталь Ст3, α=60°, [σ]=160МПа.

  1. Схему вычерчиваем в масштабе. Нумеруем стержни.

2019-01-02_13-56-14

В шарнирно-неподвижной опоре А возникают реакции RА и НА. В стержнях 1 и 2 возникают усилия N1 и N2. Применим метод сечений. Замкнутым разрезом вырежем среднюю часть системы. Жесткую балку покажем схематично — линией, усилия N1 и N2 направим от сечения.  

2019-01-02_13-57-54

Составляем уравнения равновесия

2019-01-02_13-58-31

Количество неизвестных превышает количество уравнений статики на 1. Значит, система один раз статически неопределима, и для её решения потребуется одно дополнительное уравнение. Чтобы составить дополнительное уравнение, следует рассмотреть схему деформации системы. Шарнирно-неподвижная опора А остается на месте, а стержни деформируются под действием силы.

Схема деформаций

2019-01-02_13-59-28

По схеме деформаций составим условие совместности деформаций из рассмотрения подобия треугольников АСС1 и АВВ1. Из подобия треугольников АВВ1 и АСС1 запишем соотношение:

2019-01-02_14-00-18, где ВВ11  (удлинение первого стержня)

Теперь выразим СС1 через деформацию второго стержня. Укрупним фрагмент схемы.

2019-01-02_14-01-20

Из рисунка видно, что СССС1·cos (90º-α)= СС1·sinα.

Но СС2= Δ2 , тогда Δ2= СС1·sinα, откуда:

2019-01-02_14-02-11

Превратим условие совместности деформации (4) в уравнение совместности деформации с помощью формулы Гука для деформаций. При этом обязательно учитываем характер деформаций (укорочение записываем со знаком «-», удлинение со знаком «+»).

2019-01-02_15-05-29

Тогда уравнение совместности деформаций будет:

2019-01-02_15-06-14

Сокращаем обе части на Е, подставляем числовые значения и выражаем N1 через  N2

2019-01-02_15-06-53

Подставим   соотношение (6) в уравнение (3), откуда найдем:

N1 = 7,12кН (растянут),

N2 =-20,35кН (сжат).

Определим напряжения в стержнях.

2019-01-02_15-07-37

Задача решена.

 

 

Расчет трехшарнирной арки

Задача. В трехшарнирной арке параболического очертания определить внутренние силовые факторы в точках, взятых через 2 м по линии пролета.

2019-01-01_18-48-26

1. По уравнению, которое выражает геометрические очертания оси арки, вычисляем ординаты (уi) точек, а также соответствующие этим ординатам острые углы (αi) – это углы между нормалями к сечениям арки и горизонталью, а также тригонометрические функции этих углов – sinαi, cosαi.

Очертание арки параболическое, смотрим уравнение для оси арки — здесь.

Уравнение для параболы:

2019-01-01_18-51-09

Рассчитываем ординаты для всех точек.

Начало прямоугольной системы координат положим в т.А (левая опора), тогда хА=0, уА=0

2019-01-01_18-52-22

По найденным ординатам строим арку в масштабе.

Теперь определим углы и их тригонометрические функции.

Формула для параболы:

2019-01-01_18-53-37

Для точек А и В:

2019-01-01_18-56-03

Представим арку в виде простой балки и определим балочные опорные реакции (с индексом «0»).

2019-01-01_18-56-58

Распор Н определим из уравнения относительно т. С, используя свойство шарнира.

2019-01-01_18-57-57

Далее спроецируем все силы на ось Х.

2019-01-01_18-58-38

Таким образом, реакции арки:

2019-01-01_18-59-04

Для того, чтобы проверить правильность найденных реакций составим уравнение:

2019-01-01_18-59-51

  1. Определение поперечной силы Q по формуле:

2019-01-01_19-01-04

К примеру, для т. А:

2019-01-01_19-02-04

Определим балочные поперечные силы во всех сечениях:

2019-01-01_19-02-40

Тогда арочные поперечные силы:

2019-01-01_19-03-34

3.Определение изгибающих моментов в арке по формуле:

2019-01-01_19-04-17

Определим балочные изгибающие моменты:

2019-01-01_19-06-09

Тогда арочные изгибающие моменты:

2019-01-01_19-06-59

4.Определение продольных сил в арке по формуле:

2019-01-01_19-08-10

Строим эпюры внутренних силовых факторов.

Эпюры внутренних силовых факторов в арке

Эпюры внутренних силовых факторов в арке

 

Порядок расчета трехшарнирной арки

Трехшарнирная арка

Трехшарнирная арка

  1. Определение опорных реакций в арке.

Арку решают совместно с балкой. То, что относится к арке, обозначается просто, а то, что к балке – с индексом «0».

Балку берут того же пролета и той же нагрузки. А в балке возникают только вертикальные реакции.

Определим вертикальные реакции для арки:

2018-12-27_18-51-25

Для балки результат такой же. Вертикальные реакции и в балке, и в арке одинаковые.

2018-12-27_18-52-05

Чтобы определить горизонтальные реакции, проецируем все силы на ось Х.2018-12-27_18-52-45

Чтобы найти распор, воспользуемся известным свойством шарнира С.

Составим уравнение

2018-12-27_18-53-32

Теперь сносим сечение С на балку (шарнир сносить нельзя, балка будет мгновенно изменяема). Ищем момент относительно сечения С.

2018-12-27_18-54-32  Это  момент в  балке в сечении С под шарниром.

Сравним с формулой НА. Тогда:

2018-12-27_20-25-34

Т.о. распор (и усилие в затяжке при ее наличии) обратно пропорционален стреле подъема арки.

  1. Определение внутренних силовых факторов в арке.

Делаем в арке сечение 1-1 и определяем в нем М1. Если в балке менялось расстояние по горизонтали, то в арке меняется и по вертикали – по оси у.

2018-12-27_20-26-46

Спускаем сечение 1-1 на балку и определяем момент в этой точке.

2018-12-27_20-27-30

Сравниваем формулы и получаем формулу для определения изгибающего момента М в арке:

2018-12-27_20-28-05

В арке изгибающий момент меньше, чем в балке —  арка экономичнее по материалу.

Формула для определения продольной силы N:

2018-12-27_20-28-55

Формула для определения поперечной силы Q:

2018-12-27_20-29-37

Для расчета арок требуется знать уравнение криволинейной оси арки. Оно зависит от ее очертания. Уравнения криволинейных осей арок смотреть — здесь.

 

Расчет статически определимой многопролетной балки

Статически определимые многопролетные шарнирно-консольные  балки (ШКБ).

Задача. Построить эпюры Q и M для статически определимой многопролетной балки (ШКБ).

2018-12-21_21-07-26

  1. Проверим статическую определимость балки по формуле: n=Соп-Ш-3

где n – степень статической определимости,

      Соп – количество неизвестных опорных реакций,

      Ш — количество шарниров,

      3 – количество уравнений статики.

Балка опирается на одну шарнирно неподвижную опору (2 опорные реакции) и на три шарнирно подвижных опоры (в каждой по одной опорной реакции). Таким образом: Соп = 2+3=5. Балка имеет два шарнира, значит, Ш=2

Тогда  n=5-2-3=0. Балка является статически определимой.

  1. Строим этажную схему балки, для этого заменяем шарниры шарнирно неподвижными опорами.

Шарнир – это место стыка балок, и, если посмотреть на балку с этой точки зрения, то многопролетную балку можно представить в виде трех отдельных балок.

Обозначим опоры на этажной схеме буквами.

2018-12-21_21-08-45

Балки, которые опираются только на свои опоры, называются основными. Балки, которые опираются на другие балки, называются  подвесными. Балка СD – основная, остальные – подвесные.

Расчет начинаем с балок верхних этажей, т.е. с подвесных. Влияние верхних этажей на нижние передается с помощью реакций с обратным знаком.

3. Расчет балок.

Каждую балку рассматриваем отдельно, строим для нее эпюры Q и М. Начинаем с подвесной балки АВ.

Определяем реакции RА, RВ.

2018-12-21_21-09-37

Наносим реакции на схему.

2018-12-21_21-10-24

Строим Эп Q методом сечений.

2018-12-21_21-23-14

 

Строим Эп М методом характерных точек.

В точке, где Q=0 на балке обозначим точку К – это точка, в которой М имеет экстремум. Определим положение т.К, для этого приравниваем уравнение для Q2 к 0, а размер z заменим на х.

2018-12-21_21-11-31

Рассмотрим еще одну подвесную балку – балку ЕР.

Балка ЕР относится к простым балкам, эпюры для которых известны.

2018-12-21_21-12-04

2018-12-21_21-13-44

 

 

 

Теперь рассчитываем основную балку СD. В точках В и Е передаем на балку СD с верхних этажей реакции RВ и RЕ, направленные в обратную сторону.

2018-12-21_21-15-12

Рассчитываем реакции балки СD.

2018-12-21_21-15-53

Наносим реакции на схему.

Строим эпюру Q методом сечений.

2018-12-21_21-16-45

Строим эпюру М методом характерных точек.

Точку L поставим дополнительно в середине левой консоли – она загружена равномерно распределенной нагрузкой, и для построения параболической кривой требуется дополнительная точка.

2018-12-21_21-17-44

Строим эпюру М.

Строим эпюры Q и М для всей многопролетной балки, при этом не допускаем переломов на эпюре М.  Задача решена.

2018-12-21_21-18-44

 

Расчет статически определимой фермы

Статически определимая ферма. Задача. Определить усилия в стержнях фермы второй панели слева и стойки справа от панели, а также срединной стойки аналитическими методами. Дано: d=2м; h=3м; =16м; F=5кН.

Рассмотрим ферму с симметричным загружением.

2018-12-21_15-45-46

Сначала обозначим опоры буквами А и В, нанесем опорные реакции RА и RВ.

Определим реакции из уравнений статики. Поскольку загрузка фермы симметрична, реакции будут равны между собой:

2018-12-21_15-47-19

Если загрузка фермы несимметричная, то реакции определяются как для балки с составлением уравнений равновесияМА=0 (находим RВ), МВ=0 (находим RА), у=0 (проверка).

Теперь обозначим элементы фермы:

«О» — стержни верхнего пояса (ВП),

«U» — стержни нижнего пояса (НП),

«V» — стойки,

«D» — раскосы.

С помощью этих обозначений удобно называть усилия в стержнях, н.р., О4 — усилие в стержне верхнего пояса; D2 – усилие в раскосе и т.д.

Затем обозначим цифрами узлы фермы. Узлы А и В уже обозначены, на остальных расставим цифры слева направо с 1 по 14.

2018-12-21_15-48-05

Согласно заданию, нам предстоит определить усилия в стержнях О2, D1, U2 (стержни второй панели), усилие в стойке V2, а также усилие в срединной стойке V4 . Существуют три аналитических метода определения усилий в стержнях.

  1. Метод моментной точки (метод Риттера),
  2. Метод проекций,
  3. Метод вырезания узлов.

Первые два метода применяется только тогда, когда ферму можно рассечь на две части сечением, проходящим через 3 (три) стержня. Проведем сечение 1-1 во второй панели слева.

2018-12-21_15-48-58

Сеч. 1-1 рассекает ферму на две части и проходит по трем стержням - О2, D1, U2. Рассматривать можно любую часть – правую или левую, неизвестные усилия в стержнях направляем всегда от узла, предполагая в них растяжение.

Рассмотрим левую часть фермы, покажем ее отдельно. Направляем усилия, показываем все нагрузки.

Сечение проходит по трем стержням, значит можно применить метод моментной точки. Моментной точкой для стержня называется точка пересечения двух других стержней, попадающих в сечение.

Определим усилие в стержне О2.

Моментной точкой для О2 будет т.14, т.к. именно в ней пересекаются два других стержня, попавших в сечение, — это стержни D1 и U2 .

Составим уравнение моментов относительно т. 14 (рассматриваем левую часть).

2018-12-21_15-51-41

О2 мы направили от узла, полагая растяжение, а при вычислении получили знак «-», значит, стержень О2 – сжат.

Далее в скобках будет указывать деформацию стержня – сжат или растянут.

Определяем усилия в стержне U2. Для U моментной точкой будет т.2, т.к. в ней пересекаются два других стержня — О2 и D1.2018-12-21_15-53-44

Теперь определяем моментную точку для D1. Как видно из схемы, такой точки не существует, поскольку усилия О2 и U2 не могут пересекаться, т.к. параллельны. Значит, метод моментной точки неприменим.

Воспользуемся методом проекций. Для этого спроецируем все силы на вертикальную ось У. Для проекции на данную ось раскоса D1 потребуется знать угол α. Определим его.2018-12-21_16-02-11

Определим усилие в правой стойке V2. Через эту стойку можно провести сечение, которое проходило бы по трем стержням. Покажем сечение 2-2, оно проходит через стержни  О3, V2, U2. Рассмотрим левую часть.

2018-12-21_16-02-50

Как видно из схемы, метод моментной точки в данном случае неприменим, применим метод проекций. Спроектируем все силы на ось У.

2018-12-21_16-03-47

Теперь определим усилие в срединной стойке V4. Через эту стойку нельзя провести сечение, чтобы оно делило ферму на две части и проходило бы через три стержня, значит, методы моментной точки и проекций здесь не подходят. Применим метод вырезания узлов. Стойка V4 примыкает к двум узлам – узлу 4 (вверху) и к узлу 11 (внизу). Выбираем узел, в котором наименьшее количество стержней, т.е. узел 11. Вырезаем его и помещаем в координатные оси таким образом, чтобы одно из неизвестных усилий проходило бы по одной из осей (в данном случае V4 направим по оси У). Усилия, как и прежде, направляем от узла, предполагая растяжение.

2018-12-21_16-04-42

Узел 11.

Проецируем усилия на координатные оси

х=0,   -U4+ U5=0,   U4= U5

у=0,    V4=0.

Таким образом, стержень V4 - нулевой.

Нулевым стержнем называется стержень фермы, в которой усилие равно 0.

Правила определения нулевых стержней — смотреть здесь.

Если в симметричной ферме при симметричном загружении требуется определить усилия во всех стержнях, то следует определить усилия любыми методами в одной части фермы, во второй части в симметричных стержнях усилия будут идентичны.

Все усилия в стержнях удобно свести в таблицу (на примере рассматриваемой фермы). В графе «Усилия» следует проставить значения.

2018-12-21_16-09-38