Архив рубрики: Задачи на эпюры

Задача

Для балки с жесткой заделкой построить эпюры Q и М. 

2016-09-13-21-29-06-skrinshot-ekrana

Расставляем сечения от свободного конца балки — в этом случае можно построить эпюры, не определяя опорных реакций. Рассматривать в каждом случае будем правую часть — справа от сечения. Сечения расставляем на характерных участках (между изменениями). По размерной нитке – 2 участка, 2 сечения.

2016-09-13-21-35-39-skrinshot-ekrana

Сечение 2-2 проходит по участку с равномерно распределенной нагрузкой, отмечаем размер z2 вправо от сечения до начала участка. Определяем поперечные силы в сечениях. Правило знаков см. — здесь.

2016-09-13-21-38-09-skrinshot-ekrana

Строим эпюру Q.

2016-09-13-21-44-36-skrinshot-ekrana

Построим эпюру М методом характерных точек. Расставляем точки на балке — это точки начала и конца балки (D,A), сосредоточенного момента (B), а также отметим в качестве характерной точки середину равномерно распределенной нагрузки (K) — это дополнительная точка для построения параболической кривой.

2016-09-13-21-45-51-skrinshot-ekrana

Определяем изгибающие моменты в точках. Правило знаков см. — здесь.

2016-09-13-21-48-19-skrinshot-ekrana

Момент в т. В будем определять следующим образом. Сначала определим:

2016-09-13-21-49-16-skrinshot-ekrana

Теперь:

2016-09-13-21-50-11-skrinshot-ekrana

Точку К возьмем в середине участка с равномерно распределенной нагрузкой.

2016-09-13-21-51-16-skrinshot-ekrana

Строим эпюру M. Участок АВпараболическая кривая (правило «зонтика»), участок ВDпрямая наклонная линия.

2016-09-13-21-53-26-skrinshot-ekrana

Задача на построение эпюр Q и M в балке

Для балки определить  опорные реакции и построить эпюры изгибающих моментов (М) и поперечных сил (Q).

2016-09-11-11-11-20-skrinshot-ekrana

  1. Обозначаем опоры буквами А и В и направляем опорные реакции RА и RВ.

2016-09-11-11-15-02-skrinshot-ekrana

Составляем уравнения равновесия.

2016-09-11-11-05-44-skrinshot-ekrana

Проверка

2016-09-11-11-16-10-skrinshot-ekrana

Записываем значения RА и RВ на расчетную схему.

2. Построение эпюры поперечных сил методом сечений. Сечения расставляем на характерных участках (между изменениями). По размерной нитке – 4 участка, 4 сечения.

2016-09-11-11-21-02-skrinshot-ekrana

сеч. 1-1   ход слева.

Сечение проходит по участку с равномерно распределенной нагрузкой, отмечаем размер z1 влево от сечения до начала участка. Длина участка 2 м. Правило знаков для Q — см. здесь.

2016-09-11-11-23-08-skrinshot-ekrana

Строим по найденным значением эпюру Q.

сеч. 2-2   ход справа.

Сечение вновь проходит по участку равномерно распределенной нагрузкой, отмечаем размер z вправо от сечения до начала участка. Длина участка 6 м.

2016-09-11-12-13-12-skrinshot-ekrana

Строим эпюру Q.

сеч. 3-3   ход справа.

2016-09-11-11-31-25-skrinshot-ekrana

сеч. 4-4   ход справа.

2016-09-11-11-32-25-skrinshot-ekrana

Строим эпюру Q.

2016-09-11-11-34-19-skrinshot-ekrana

3. Построение эпюры М методом характерных точек.

Характерная точка – точка, сколь-либо заметная на балке. Это точки А, В, С, D, а также точка К, в которой Q=0 и изгибающий момент имеет экстремум. Также в середине консоли поставим дополнительную точку Е, поскольку на этом участке под равномерно распределенной нагрузкой эпюра М описывается кривой линией, а она строится, как минимум, по 3 точкам.

2016-09-11-11-38-47-skrinshot-ekrana

Итак, точки расставлены, приступаем к определению в них  значений изгибающих моментов. Правило знаков — см. здесь.

Участки NA, ADпараболическая кривая (правило «зонтика» у механических специальностей или «правило паруса» у строительных ), участки DС, СВпрямые наклонные линии.

2016-09-11-11-43-05-skrinshot-ekrana

Момент в точке D следует определять как слева, так и справа от точки D. Сам момент в эти выражения не входит. В точке D получим два значения с разницей на величину mскачок на его величину.

2016-09-11-11-44-18-skrinshot-ekrana

Теперь следует определить момент в точке К (Q=0). Однако сначала определим положение точки К, обозначив расстояние от нее до начала участка неизвестным х.

2016-09-11-11-46-32-skrinshot-ekrana

Т. К принадлежит второму характерному участку, его уравнение для поперечной силы (см. выше)

2016-09-11-11-47-50-skrinshot-ekrana

Но поперечная сила в т. К равна 0, а z2 равняется неизвестному х.

Получаем уравнение:

2016-09-11-11-48-52-skrinshot-ekrana

Теперь, зная х, определим  момент в точке К с правой стороны.

2016-09-11-12-07-29-skrinshot-ekrana

Строим эпюру М. Построение выполним для механических специальностей, откладывая положительные значения вверх от нулевой линии и используя правило «зонтика».

2016-09-11-12-09-52-skrinshot-ekrana

Задача на построение эпюр поперечной силы Q, изгибающего момента M и подбор сечения (проектный расчет)

Для заданной схемы консольной балки   требуется построить эпюры поперечной силы  Q и изгибающего момента M, выполнить проектировочный расчет, подобрав круглое сечение.

Материал — дерево, расчетное сопротивление материала R=10МПа, М=14кН·м,q=8кН/м2016-04-03 20-55-51 Скриншот экрана

Строить эпюры в консольной балке с жесткой заделкой можно двумя способами — обычным, предварительно определив опорные реакции, и без определения опорных реакций, если рассматривать участки, идя от свободного конца балки и отбрасывая левую часть с заделкой. Построим эпюры обычным способом.

1. Определим опорные реакции.

Равномерно распределенную нагрузку q заменим условной силой Q= q·0,84=6,72 кН

В жесткой заделке три опорные реакции — вертикальная, горизонтальная и момент, в нашем случае горизонтальная реакция равна 0.

Найдем вертикальную реакцию опоры RA  и опорный момент МA из уравнений равновесия.2016-11-19-19-46-34-skrinshot-ekrana

2. Строим эпюру поперечных сил.

На первых двух участках справа поперечная сила отсутствует. В начале участка с равномерно распределенной нагрузкой (справа) Q=0, в заделеке — величине реакции RA.2016-04-03 21-25-58 Скриншот экрана3. Для построения эпюры изгибающих моментов M составим выражения для их определения на участках. Эпюру моментов построим на растянутых волокнах, т.е. вниз. 2016-04-03 21-52-36 Скриншот экрана

4.Проектировочный расчет, то есть подбор размеров поперечного сечения.

Максимальный изгибающий момент с эпюры М=14 кН·м. Определим осевой момент сопротивления сечения

2016-04-03 21-47-30 Скриншот экрана

Таким образом, подбираем сечение с диаметром 25 см.

                                              

                                                                      

Построение эпюр Q и М , проектный расчет (подбор сечения)

Требуется построить эпюры Q и  и подобрать стальную балку двутаврового поперечного сечения при расчетном сопротивлении R=160 МПа.

2014-12-20 19-24-52 Скриншот экрана

1.Определение реакций:

Сумма моментов относительно опор:

Опора А2014-12-20 19-26-02 Скриншот экрана

Опора В:   

2014-12-20 19-26-58 Скриншот экрана

Сумма проекций всех сил на ось У (проверка):

2014-12-20 19-29-32 Скриншот экрана

2.Записываем уравнения Q и M для каждого из участков в общем виде, при этом учитываем знаки.

1) Первый участок:

2014-12-20 19-30-48 Скриншот экрана

2) Второй участок: 

2014-12-20 19-31-46 Скриншот экрана

3) Третий участок: 

2014-12-20 19-32-39 Скриншот экрана

3.Проектировочный расчет, то есть подбор размеров поперечного сечения.

Подобрать стальную балку двутаврового поперечного сечения при R=160 МПа:

С эпюры берем максимальный момент:

2014-12-20 19-34-00 Скриншот экрана

По сортаменту подбираем двутавр № 20 с     2014-12-20 19-34-58 Скриншот экрана

Двутавр можно взять чуть меньше, при условии, что перенапряжение составляет меньше 5%:

2014-12-20 19-36-35 Скриншот экрана

 

Построение эпюр Q и М, проектировочный расчет (подбор сечения)

Для заданной балки требуется построить эпюры Q и M, найти Mmax и сделать проектировочный расчет — подобрать деревянную балку круглого поперечного сечения. Расчетное сопротивление материала  Ru=10 МПа. 

2014-12-20 14-42-44 Скриншот экрана

1.Определение реакций:

Сумма проекций всех сил на ось z2014-12-20 14-43-50 Скриншот экрана

Сумма проекций всех сил на ось y2014-12-20 14-44-37 Скриншот экрана

Сумма моментов относительно точки А2014-12-20 14-45-29 Скриншот экрана

После нахождения опорных реакций следует выполнить проверку, использовав уравнение равновесия (сумма моментов относительно любой выбранной точки должна быть равна нулю).

2. Записываем уравнения Q и M для каждого из участков в общем виде, при этом учитываем знаки.

— поперечная сила, считается положительной, если стремится повернуть рассматриваемую часть балки по часовой стрелке.

M— изгибающий момент, считается положительным, если растягивает нижние волокна.

1)Первый участок: 

2014-12-20 14-53-09 Скриншот экрана

2) Второй участок:

2014-12-20 14-54-23 Скриншот экрана

3) Третий участок:

2014-12-20 14-55-25 Скриншот экрана

 

Следует отметить ,что на втором и третьем участке для построения плавной кривой потребуются дополнительные точки, в которых следует посчитать значение изгибающего момента.

3.Проектировочный расчет, то есть подбор размеров поперечного сечения.

Подберем деревянную балку круглого поперечного сечения при Ru=10 МПа

С эпюры берем максимальный момент и рассчитываем требуемый осевой момент сопротивления, после чего вычисляем необходимый диаметр балки.2014-12-20 14-59-58 Скриншот экрана

 

 

 

Построение эпюр в балке с шарниром

Задача 1. Построить эпюры Q и M в балке с шарниром.

2014-11-01 11-14-15 Скриншот экрана

1. Определим опорные реакции. Для определения опорных реакций используем свойство шарнира момент в нем как от левых, так и от правых сил равен 0.

Если рассмотреть левую часть, то в уравнении   2014-11-01 11-15-56 Скриншот экрана    будут присутствовать две неизвестные RА и МА. Значит, следует рассмотреть правую часть (из него найдем RВ).

2014-11-01 11-18-15 Скриншот экрана

Теперь 2014-11-01 11-19-12 Скриншот экрана  из него найдем МА

2014-11-01 11-20-12 Скриншот экрана

Следующее уравнение 2014-11-01 11-21-12 Скриншот экрана из него найдем RА

2014-11-01 11-22-14 Скриншот экрана

2. Строим эпюру Q.

Участок первый — АС, смотрим левую часть

Участок второй — СВ, смотрим правую часть

2014-11-01 11-23-25 Скриншот экрана

3. Строим эпюру М

2014-11-01 11-24-28 Скриншот экрана

Определим  момент в точке, где Q=0 (момент имеет экстремум), это момент в точке К, т.е.  МК , для этого определим положение точки К.

2014-11-01 11-28-16 Скриншот экрана Это уравнение первого участка, на котором находится точка К

в точке К 2014-11-01 11-30-23 Скриншот экрана

 

Строим эпюры. Задача решена.

Задача 2. Построить эпюры Q и M в балке с шарниром.

2014-11-01 11-32-06 Скриншот экрана

1. Определим опорные реакции. Для определения опорных реакций используем свойство шарнира – момент в нем как от левых, так и от правых сил равен 0.

Если рассмотреть правую часть, то в уравнении     2014-11-01 11-34-26 Скриншот экрана  будут присутствовать две неизвестные  и . Значит, следует рассмотреть левую часть.

2014-11-01 11-37-14 Скриншот экрана

 

Знак «-» говорит о том, что реакция RВ направлена в обратную сторону.

Проверка:2014-11-01 11-39-22 Скриншот экрана

2. Построение эпюры Q.

Участок первый - ЕА, смотрим левую часть

Участок второй - АС, смотрим левую часть

Участок третий - СВ, смотрим левую часть

Участок четвертый - ВД, смотрим правую часть

2014-11-01 11-48-25 Скриншот экрана

3. Построение эпюры М

2014-11-01 11-50-42 Скриншот экрана

Т.к. точки экстремума на эп.Q не наблюдается, определяем изгибающий момент в середине участка ВД

2014-11-01 11-51-58 Скриншот экрана

Строим эпюры, задача решена.

 

Построение эпюр в рамах

Задача 1. Построить эпюры внутренних усилий для рамы ( рис.а).  

Дано: F=30кН, q=40 кН/м, М=50кНм, а=1,8м, h=2м.

2014-10-16 22-31-57 Скриншот экрана

Решение.

Для рассматриваемой рамы опорные реакции можно не определять, поскольку будем рассматривать участки, идя от свободных концов рамы к заделке.

Вычислим значения внутренних усилий N, Q и М в характерных сечениях рамы. Правило знаков для поперечных сил Q и изгибающих моментов М такие же,как в балках. Эпюры моментов  построим на сжатых волокнах. Для  продольной N, силы правило знаков: растягивающая сила – положительна, сжимающаяотрицательна.

Участок ВС:     2014-10-16 22-37-07 Скриншот экрана(сжаты нижние волокна).

2014-10-16 22-39-16 Скриншот экрана (сжаты нижние волокна).

Участок DC:  2014-10-16 22-40-57 Скриншот экрана(сжаты верхние волокна). 

Участок СК: 2014-10-16 22-43-50 Скриншот экрана(сжаты левые волокна)

2014-10-16 22-43-50 Скриншот экрана(сжаты левые волокна)

На рисунке  - эпюры нормальных (продольных) сил — (б), , поперечных сил — (в) и изгибающих моментов — (г). 

Проверка равновесия узла С:

2014-10-16 22-53-45 Скриншот экрана

Задача 2  Построить эпюры внутренних усилий для рамы  (рис. а).

Дано: F=30кН, q=40 кН/м, М=50кНм, а=3м, h=2м.

2014-10-16 22-55-29 Скриншот экрана

Определим опорные  реакции  рамы:

2014-10-16 22-57-05 Скриншот экрана

Из этих уравнений найдем:

2014-10-16 22-57-54 Скриншот экрана

Поскольку значения реакции RK имеет знак минус, на рис. а изменяется направление данного вектора на противоположное, при этом записывается RK=83,33кН.

Определим значения внутренних усилий N, Q и М в характерных сечениях рамы:

Участок ВС:2014-10-16 23-00-06 Скриншот экрана

(сжаты правые волокна).

Участок CD: 2014-10-16 23-04-10 Скриншот экрана

(сжаты правые волокна);

2014-10-16 23-05-33 Скриншот экрана

(сжаты правые волокна).

Участок DE: 2014-10-16 23-13-33 Скриншот экрана

(сжаты нижние волокна);

2014-10-16 23-14-38 Скриншот экрана

(сжаты нижние волокна).

Участок КС

2014-10-16 23-15-55 Скриншот экрана

(сжаты левые волокна).

Построим эпюры  нормальных (продольных) сил (б), поперечных сил (в) и изгибающих моментов (г).

Рассмотрим равновесие узлов D и Е

2014-10-16 23-18-55 Скриншот экрана

Из рассмотрения узлов Dи Е видно, что они находятся в равновесии.

Задача 3.  Для  рамы с шарниром построить эпюры внутренних усилий.

Дано: F=30кН, q=40 кН/м, М=50кНм, а=2м, h=2м. 

2016-11-22-21-33-03-skrinshot-ekrana

Решение. Определим опорные реакции. Следует отметить ,что в обеих шарнирно-неподвижных опорах по две реакции. В связи с этим следует использовать свойство шарнира С — момент в нем как от левых ,так и от правых сил равен нулю. Рассмотрим левую часть.

Уравнения равновесия для рассматриваемой рамы можно записать в виде:

2016-11-22-21-30-06-skrinshot-ekrana

Из решения данных уравнений следует:

2014-10-16 23-30-06 Скриншот экрана

На схеме рамы  направление действия силы НВ изменяется на противоположное (НB=15кН).

Определим усилия в характерных сечениях рамы.

Участок BZ: 2014-10-16 23-31-59 Скриншот экрана

(сжаты левые волокна).

Участок ZC: 

2014-10-16 23-33-34 Скриншот экрана

(сжаты левые волокна); 

2014-10-16 23-34-35 Скриншот экрана

Участок КD:  2014-10-16 23-51-27 Скриншот экрана

(сжаты левые волокна);

2014-10-16 23-52-12 Скриншот экрана

 (сжаты левые волокна).

Участок DС: 

2014-10-16 23-55-19 Скриншот экрана

 (сжаты нижние волокна); 

2014-10-17 00-00-55 Скриншот экрана

Определение экстремального значения изгибающего момента на участке  CD :

2014-10-17 00-02-59 Скриншот экрана

(сжаты верхние волокна). 

Строим эпюры внутренних усилий. Проверяем равновесие узлов рамы.2014-10-17 00-04-45 Скриншот экрана

Узлы  C и D находятся в равновесии.

Задача 8

Построение  эпюр М и в балке с жесткой заделкой  с определенными опорными реакциями. Построение методом характерных точек.

2014-09-14 14-43-57 Скриншот экрана

1. Построение эпюры поперечных сил. Для консольной балки (рис. а) характерные точки: А – точка приложения опорной реакции VA; С – точка приложения сосредоточенной силы; D, B– начало и конец распределенной нагрузки. Для консоли поперечная сила определяется аналогично двухопорной балке. Итак, при ходе слева:

2014-09-14 14-46-40 Скриншот экрана

Для проверки правильности определения поперечной силы в сечениях пройдите балку аналогичным образом, но с правого конца. Тогда отсеченными будут правые части балки. Помните, что правило знаков при этом изменятся. Результат должен получиться тот же. Строим эпюру поперечной силы (рис,б).

 

2. Построение эпюры моментов 

Для консольной балки эпюра изгибающих моментов строится аналогично предыдущему построению.Характерные точки для этой балки (см. рис. а) следующие: А – опора; С — точка при­ложения сосредоточенного момента и силы F; и В — начало и конец действия рав­номерно распределенной на­грузки. Поскольку эпюра Qx на участке действия распределенной нагрузки нулевую линию не пересекает, для построения эпюры моментов на данном участке (параболическая кривая) следует выбрать произвольно дополнительную точку для построения кривой, к примеру в середине участка.

Ход слева:

2014-09-14 14-50-48 Скриншот экрана

Ходом справа находим MB = 0.

По найденным значениям строим эпюру изгибающих моментов (см. рис. в).

Задача 7

Построение  эпюр М и Q в балке на двух опорах с определенными опорными реакциями. Построение методом характерных точек.

2014-09-14 13-52-55 Скриншот экрана

1. Построение эпюры Qу.  Из теоретического курса известно, что на участке балки с равномерно распределенной нагрузкой эпюра Qу ограничивается наклонной прямой, а на участке, на котором нет распределенной нагрузки, — прямой, параллельной оси, поэтому для построения эпюры поперечных сил достаточно определить значения Qу в начале и конце каждого участка. В сечении, соответствующем точке приложения сосредоточенной силы, поперечная сила должна быть вычислена чуть левее этой точки (на бесконечно близком расстоянии от нее) и чуть правее ее; поперечные силы в таких местах обозначаются соответственно  2014-09-14 13-55-55 Скриншот экрана.

Строим эпюру Qу методом характерных точек, ходом слева. Для большей наглядности отбрасываемую часть балки на первых порах рекомендуется закрывать листом бумаги. Характерными точками для двухопорной балки (рис. а) будут точки и D – начало и конец распределенной нагрузки, а также  A   и B – точки приложения опорных реакций, E– точка приложения сосредоточенной силы. Проведем мысленно ось y перпендикулярно оси балки через точку С и не будем менять ее положение, пока не пройдем всю балку от C до E. Рассматривая левые отсеченные по характерным точкам части балки, проецируем на ось y действующие на данном участке силы с соответствующими знаками. В результате получаем:2014-09-14 14-27-25 Скриншот экрана

Для проверки правильности определения поперечной силы в сечениях можно пройти балку аналогичным образом, но с правого конца. Тогда отсеченными будут правые части балки. Результат должен получиться тот же. Совпадение результатов может служить контролем построения эпюры Qу. Проводим нулевую линию под изображением балки и от нее в принятом масштабе откладываем найденные значения поперечных сил с учетом знаков в соответствующих точках. Получим эпюру Qу (рис. б).

Построив эпюру, обратите внимание на следующее: эпюра под распределенной нагрузкой изображается наклонной прямой, под ненагруженными участками — отрезками, параллельными нулевой линии, под сосредоточенной силой на эпюре образуется скачок, рав­ный значению силы. Если наклонная линия под распределенной на­грузкой пересекает нулевую линию, отметьте эту точку, то это точка экстремума, и она является теперь для нас характерной, согласно дифференциальной зависимости между Qу и Мx, в этой точке момент имеет экстремум и его нужно будет определить при построении эпюры изгибающих моментов. В нашей задаче это точка К. Сосредоточенный момент на эпю­ре Qу себя никак не проявляет, так как сумма проекций сил, образую­щих пару, равна нулю.

2. Построение эпюры моментов.Строим эпюру изгибающих моментов, как и поперечных сил, ме­тодом характерных точек, ходом слева. Известно, что на участке балки с равномерно распределенной нагрузкой эпюра изгибающих моментов очерчивается кривой линией (квадратичной параболой), для построения которой надо иметь не менее трех точек и, следовательно, должны быть вычислены значе­ния изгибающих моментов в начале участка, конце его и в одном проме­жуточном сечении. Такой промежуточной точкой лучше всего взять сечение, в кото­ром эпюра Qу пересекает нулевую линию, т.е. где Qу= 0. На эпюре М в этом сечении должна находиться вершина параболы. Если же эпюра Qу не пересекает нулевую линию, то для построения эпюры М следует на данном участке взять дополнительную точку, к примеру, в середине участка (начала и конца действия распределенной нагрузки), помня, что выпуклостью парабола всегда обращена вниз, если на­грузка действует сверху вниз (для строительных специальностей). Существует правило «дождя», которое очень помогает при построении параболической части эпю­ры М.  Для строителей это правило выглядит следующим образом: представьте, что распределенная нагрузка — это дождь, подставьте под него зонт в перевернутом виде, так чтобы дождь не стекал, а собирался в нем. Тогда выпуклость зонта будет обращена вниз. Точно так и бу­дет выглядеть очертание эпюры моментов под распределенной нагрузкой. Для механиков существует так называемое  правило «зонта». Распределенная нагрузка представляется дождем, а очертание эпюры должно напоминать очертания зонтика. В данном примере эпюра построена для строителей.

Если требуется более точное построение эпюры, то должны быть вычислены значения изгибающих моментов в нескольких промежуточ­ных сечениях. Условимся для каждого такого участка изгибающий момент сначала определить в произвольном сечении, выражая его через расстояние х от какой-либо точки. Затем, давая расстоянию х ряд значений, получим значения изгибающих моментов в соответствую­щих сечениях участка. Для участков, на которых нет распределенной нагрузки, изгибающие моменты определяют в двух сечениях, соот­ветствующих началу и концу участка, так как эпюра М на таких участках ограничивается прямой. Если к балке приложен внешний сосредоточенный момент, то обязательно надо вычислять изгибающий момент чуть левее места приложения сосредоточенного момента и чуть правее его.

Для двухопорной балки характерные точки следующие: C и D – начало и конец распределенной нагрузки; Аопора балки; В вторая опора балки и точка приложения сосредоточенного момента; Еправый конец балки; точка К, соответствующая сечению балки, в котором Qу = 0.

Ход слева. Правую часть до рассматриваемого сечения мысленно отбрасываем (возьмите лист бумаги и прикройте им отбрасываемую часть балки). Находим сумму моментов всех сил, действующих слева от сечения относительно рассматриваемой точки. Итак,

2014-09-14 14-32-16 Скриншот экрана

Прежде чем определить момент в сечении К, необходимо найти расстояние х=АК. Составим выражение для поперечной силы в данном сечении и приравняем его к нулю (ход слева):

2014-09-14 14-35-15 Скриншот экрана

Это расстояние можно найти также из подобия треугольников KLN и KIG на эпюре Qу (рис.б).

Определяем момент в точке К:

2014-09-14 14-37-27 Скриншот экрана

Пройдем оставшуюся часть балки ходом справа.

2014-09-14 14-38-34 Скриншот экрана

Как видим, момент в точке D при ходе слева и справа получился одинаковый – эпюра замкнулась. По найденным значениям строим эпюру. Положительные значения откладываем вниз от нулевой линии, а отрицательные – вверх (см. рис. в).

Задача 6

Построение  эпюр М и Q в балке с неравномерно распределенной нагрузкой. Построение методом сечений.

2014-09-14 13-30-20 Скриншот экрана

Определяем реакции. Задаёмся направлениями вертикальных опорных реакций А и В и определяем их из уравнений статики типа суммы моментов:

2014-09-14 13-31-44 Скриншот экрана

I участок (оставляем левую часть балки, начало отсчета располагаем на левой опоре)

2014-09-14 13-34-18 Скриншот экранаЗдесь помним, что нагрузка имеет форму прямоугольного треугольника, центр тяжести которого приложен на расстоянии одной трети от прямого угла.

2014-09-14 13-40-10 Скриншот экрана

Найдем аналитический максимум функции изгибающего момента в пределах первого участка из условия :

2014-09-14 13-42-05 Скриншот экрана

II участок  

2014-09-14 13-43-25 Скриншот экранаоткуда2014-09-14 13-45-35 Скриншот экрана  — это уравнение прямой.

При z2=0:      M=0,

z2=2м:    M=-60кНм.

2014-09-14 13-47-25 Скриншот экрана

тогда   Q(z2)=F=30 кН – постоянная функция.

Заметим, что величина скачка в эпюре Q на правой опоре в точности соответствует самой правой опорной реакции.