Архив рубрики: Задачи

Примеры решения задач

Задача

Для балки с жесткой заделкой построить эпюры Q и М. 

2016-09-13-21-29-06-skrinshot-ekrana

Расставляем сечения от свободного конца балки — в этом случае можно построить эпюры, не определяя опорных реакций. Рассматривать в каждом случае будем правую часть — справа от сечения. Сечения расставляем на характерных участках (между изменениями). По размерной нитке – 2 участка, 2 сечения.

2016-09-13-21-35-39-skrinshot-ekrana

Сечение 2-2 проходит по участку с равномерно распределенной нагрузкой, отмечаем размер z2 вправо от сечения до начала участка. Определяем поперечные силы в сечениях. Правило знаков см. — здесь.

2016-09-13-21-38-09-skrinshot-ekrana

Строим эпюру Q.

2016-09-13-21-44-36-skrinshot-ekrana

Построим эпюру М методом характерных точек. Расставляем точки на балке — это точки начала и конца балки (D,A), сосредоточенного момента (B), а также отметим в качестве характерной точки середину равномерно распределенной нагрузки (K) — это дополнительная точка для построения параболической кривой.

2016-09-13-21-45-51-skrinshot-ekrana

Определяем изгибающие моменты в точках. Правило знаков см. — здесь.

2016-09-13-21-48-19-skrinshot-ekrana

Момент в т. В будем определять следующим образом. Сначала определим:

2016-09-13-21-49-16-skrinshot-ekrana

Теперь:

2016-09-13-21-50-11-skrinshot-ekrana

Точку К возьмем в середине участка с равномерно распределенной нагрузкой.

2016-09-13-21-51-16-skrinshot-ekrana

Строим эпюру M. Участок АВпараболическая кривая (правило «зонтика»), участок ВDпрямая наклонная линия.

2016-09-13-21-53-26-skrinshot-ekrana

Задача на построение эпюр Q и M в балке

Для балки определить  опорные реакции и построить эпюры изгибающих моментов (М) и поперечных сил (Q).

2016-09-11-11-11-20-skrinshot-ekrana

  1. Обозначаем опоры буквами А и В и направляем опорные реакции RА и RВ.

2016-09-11-11-15-02-skrinshot-ekrana

Составляем уравнения равновесия.

2016-09-11-11-05-44-skrinshot-ekrana

Проверка

2016-09-11-11-16-10-skrinshot-ekrana

Записываем значения RА и RВ на расчетную схему.

2. Построение эпюры поперечных сил методом сечений. Сечения расставляем на характерных участках (между изменениями). По размерной нитке – 4 участка, 4 сечения.

2016-09-11-11-21-02-skrinshot-ekrana

сеч. 1-1   ход слева.

Сечение проходит по участку с равномерно распределенной нагрузкой, отмечаем размер z1 влево от сечения до начала участка. Длина участка 2 м. Правило знаков для Q — см. здесь.

2016-09-11-11-23-08-skrinshot-ekrana

Строим по найденным значением эпюру Q.

сеч. 2-2   ход справа.

Сечение вновь проходит по участку равномерно распределенной нагрузкой, отмечаем размер z вправо от сечения до начала участка. Длина участка 6 м.

2016-09-11-12-13-12-skrinshot-ekrana

Строим эпюру Q.

сеч. 3-3   ход справа.

2016-09-11-11-31-25-skrinshot-ekrana

сеч. 4-4   ход справа.

2016-09-11-11-32-25-skrinshot-ekrana

Строим эпюру Q.

2016-09-11-11-34-19-skrinshot-ekrana

3. Построение эпюры М методом характерных точек.

Характерная точка – точка, сколь-либо заметная на балке. Это точки А, В, С, D, а также точка К, в которой Q=0 и изгибающий момент имеет экстремум. Также в середине консоли поставим дополнительную точку Е, поскольку на этом участке под равномерно распределенной нагрузкой эпюра М описывается кривой линией, а она строится, как минимум, по 3 точкам.

2016-09-11-11-38-47-skrinshot-ekrana

Итак, точки расставлены, приступаем к определению в них  значений изгибающих моментов. Правило знаков — см. здесь.

Участки NA, ADпараболическая кривая (правило «зонтика» у механических специальностей или «правило паруса» у строительных ), участки DС, СВпрямые наклонные линии.

2016-09-11-11-43-05-skrinshot-ekrana

Момент в точке D следует определять как слева, так и справа от точки D. Сам момент в эти выражения не входит. В точке D получим два значения с разницей на величину mскачок на его величину.

2016-09-11-11-44-18-skrinshot-ekrana

Теперь следует определить момент в точке К (Q=0). Однако сначала определим положение точки К, обозначив расстояние от нее до начала участка неизвестным х.

2016-09-11-11-46-32-skrinshot-ekrana

Т. К принадлежит второму характерному участку, его уравнение для поперечной силы (см. выше)

2016-09-11-11-47-50-skrinshot-ekrana

Но поперечная сила в т. К равна 0, а z2 равняется неизвестному х.

Получаем уравнение:

2016-09-11-11-48-52-skrinshot-ekrana

Теперь, зная х, определим  момент в точке К с правой стороны.

2016-09-11-12-07-29-skrinshot-ekrana

Строим эпюру М. Построение выполним для механических специальностей, откладывая положительные значения вверх от нулевой линии и используя правило «зонтика».

2016-09-11-12-09-52-skrinshot-ekrana

Задача

Определить главные центральные моменты инерции, осевые моменты сопротивления  сечения, составленного из стандартных профилей проката.

Сечение состоит из двух неравнополочных уголков 75×50х5 (маркировка в мм) и швеллера № 16 (№ швеллера говорит о его высоте в см).

2016-09-08-20-28-30-skrinshot-ekrana

  1. Определим положение центра тяжести сечения.

Сечение симметрично относительно оси у, проводим её как ось – главную и центральную. Координата хС=0. Для нахождения уС проводим случайную ось х (выбранную случайным образом). Обозначим центры тяжести всех профилей и выпишем необходимые характеристики профилей из сортамента прокатной стали.

Фигуры 1,2 – уголки 75×50х5

2016-09-08-20-30-55-skrinshot-ekrana

А1=А2=6,11 см2

Iх1= Iх2=34,8 см4

Iу1= Iу2=12,5 см4

Фигура 3 – швеллер №16

2016-09-08-20-32-08-skrinshot-ekrana

А3=18,1 см2,    

Iх3=747 см4

Iу3=63,3 см4.

Покажем на схеме и определим координаты у для профилей

ууу=2,39 см,

у1= -z=-1,8 см.

Определим координату уС по формуле

 2016-09-06 20-26-28 Скриншот экрана,

где Аiплощадь каждого профиля,

      уi – координата.

2016-09-08-20-35-07-skrinshot-ekrana

Проводим главную центральную ось х вниз от оси х′ на 0,11 см, наносим т.С – центр тяжести всего сечения.

2. Определяем главные центральные моменты инерции по формулам перехода:

2016-09-06 20-36-54 Скриншот экрана,

где Ixi , Iyi моменты инерции каждой фигуры;

Аi площадь сечения каждой фигуры;

аi – расстояние от центра тяжести каждой фигуры до главной центральной оси х;

bi – расстояние от центра тяжести каждой фигуры до главной центральной оси у.

Определяем аi (смотрим схему)

аау1+|уС|= 2,39 + 0,11 = 2,5см,

а3= — (|у3|-|уС|) = -1,69см.

Определяем Iх. Следует обратить внимание на то, что фигура 3 – швеллер – повернут, поэтому, для определения Iх следует из сортамента взять Iу швеллера.

Iх3=63,3см4

2016-09-08-20-40-40-skrinshot-ekrana

Определяем Iу.  Для швеллера (повернут)  Iу3  Iх = 747см4.

Определим размеры bi, показываем на схеме.

b1= -х0 = -1,17см,

b2= х0 = 1,17см,

b3=0, т.к. центр тяжести швеллера лежит на оси у.

2016-09-08-20-42-24-skrinshot-ekrana3. Определим осевые моменты сопротивления сечения по формулам:

2016-09-08-20-44-11-skrinshot-ekrana

Из схемы видно ,что

2016-09-08-20-44-50-skrinshot-ekrana

Тогда

2016-09-08-20-46-18-skrinshot-ekrana

Задача

Определить главные центральные моменты инерции сечения геометрической формы.

2016-09-06 20-24-39 Скриншот экрана

  1. Определим положение центра тяжести сечения.

Сечение симметрично относительно оси у, поэтому нанесем ось у – ось, на которой находится центр тяжести всего сечения. Координата хС=0, значит, следует определить координату уС.

Выберем случайную ось х — внизу сечения.

Разобьем сечение на простые фигуры:

фигура 1 – прямоугольник с основанием см и высотой см, отмечаем центр тяжести прямоугольника – т. С1

фигура 2 – равнобедренный треугольник с основанием см и высотой см, отмечаем его центр тяжести – т. С2.

Теперь  вычислим площади каждой фигуры и определим  координаты у каждой фигуры, затем координаты нанесем на схему

Прямоугольник

2016-09-06 20-30-29 Скриншот экрана

Треугольник

2016-09-06 20-33-02 Скриншот экрана

Теперь определим координату центра тяжести всего сечения по формуле:

2016-09-06 20-26-28 Скриншот экрана

Тогда

2016-09-06 20-34-57 Скриншот экрана

Отмечаем уС на схеме, центр тяжести всего сечения – т.С — и проводим через эту точку главную центральную ось х.

По формулам перехода определяем главные центральные моменты инерции сечения:

2016-09-06 20-36-54 Скриншот экрана,

где Ixi  Iyi  — моменты инерции каждой фигуры;

Аi площадь сечения каждой фигуры;

аi расстояние от центра тяжести каждой фигуры до главной центральной оси х;

bi расстояние от центра тяжести каждой фигуры до главной центральной оси у.

Фигура 1 – прямоугольник

2016-09-06 20-40-04 Скриншот экрана

Расстояние а1 от С1 до оси х покажем на схеме. Из схемы видно, что а1=- ( уС - у1 )= -0,8 см. Так как С1 находится на оси у, то b1=0.

Фигура 2 – треугольник

2016-09-06 20-43-51 Скриншот экрана

Находим а=  у2 - уС = 7 — 3,8= 3,2 см, отмечаем на схеме.

b2=0, т.к. С2 находится на оси у.

Подставляем значения в формулы перехода и определяем:

главный центральный момент инерции сечения относительно оси х

2016-09-06 20-46-36 Скриншот экрана

— главный центральный момент инерции сечения относительно оси у

2016-09-06 20-47-22 Скриншот экрана

Таким образом,

2016-09-06 20-48-04 Скриншот экрана

Задача на статически неопределимый брус с зазором

Расчет бруса с зазором. Для статически неопределимого стального ступенчатого бруса построить эпюры продольных сил, нормальных напряжений, перемещений. Проверить прочность бруса. До нагружения между верхним концом и опорой имел место зазор Δ=0,1 мм. Материал – сталь Ст 3,  модуль продольной упругости Е=2·105 МПа, допускаемое напряжение [σ]=160МПа.

2016-09-04 13-42-56 Скриншот экрана

  1. После нагружения зазор закроется и реакции возникнут и в нижней, и в верхней опоре. Покажем их произвольно, это реакции RA и RВ. Составим уравнение статики.

у=0                RFF2 - RВ =0

В уравнении 2 неизвестных, а уравнение одно, значит задача 1 раз статически неопределима, и для ее решения требуется 1 дополнительное уравнение.

Это уравнение совместности деформаций. В данном случае совместность деформаций участков бруса состоит в том, что изменение длины бруса (удлинение) не может превзойти величины зазора, т.е. Δ, это условие совместности деформации.

  1. Теперь разобьем брус на участки и проведем на них сечения – их 4 по количеству характерных участков. Каждое сечение рассматриваем отдельно, двигаясь в одном направлении – от нижней опоры вверх. В каждом сечении выражаем силу N через неизвестную реакцию. Направляем N от сечения.

2016-09-04 13-54-16 Скриншот экрана

Выпишем отдельно значения продольных сил в сечениях:

N= - RА

N= 120 - RА

N= 120 - RА

N= 30- RА

3. Вернемся к составлению условия совместности деформации. Имеем 4 участка, значит

             Δ1+ Δ2+ Δ3+ Δ4= Δ  (величина зазора).

Используя формулу Гука для определения абсолютной деформации  2016-09-04 12-30-57 Скриншот экранасоставим уравнение совместности деформаций, — это именно то дополнительное уравнение, которое необходимо для решения задачи.

2016-09-04 14-02-39 Скриншот экрана

Попробуем упростить уравнение. Помним, что величина зазора Δ=0,1 мм = 0,1·10-3 м

2016-09-04 14-04-59 Скриншот экрана

Е – модуль упругости, Е=2·105МПа=2·108кПа.

2016-09-04 14-05-46 Скриншот экрана

Подставляем вместо N их значения, записанные через опорную реакцию RА.

2016-09-04 14-06-23 Скриншот экрана

4. Вычисляем N и строим эпюру продольных сил.

N1=- RА=-47,5кН

N2=120 - RА=72,5кН

N3=120 - RА=72,5кН

N4=30- RА=-17,5кН.

2016-09-04 14-16-38 Скриншот экрана

5. Определяем нормальные напряжения σ  по формуле 2016-09-04 12-23-20 Скриншот экранаи строим их эпюры

2016-09-04 14-20-31 Скриншот экрана

Строим эпюру нормальных напряжений.

2016-09-04 14-24-46 Скриншот экрана

Проверяем прочность.

σmax= 90,63 МПа < [σ]=160МПа.

Прочность обеспечена.

  1. Вычисляем перемещения, используя формулу Гука для деформаций.

Идем от стены А к зазору.

2016-09-04 14-22-44 Скриншот экрана

Получили величину ω4, равную зазору ,это является проверкой правильности определения перемещений.

Строим эпюру перемещений.

2016-09-04 14-27-36 Скриншот экрана

Задача решена.

Задача

Для статически определимого стального ступенчатого бруса построить эпюры продольных сил, нормальных напряжений и перемещений. Проверить прочность бруса. Материал – сталь Ст 3, модуль продольной упругости Е=2·105 МПа, допускаемое напряжение [σ]=160МПа.

2016-09-04 11-49-14 Скриншот экрана

  1. Произвольно направляем реакцию стены RA и определяем её из уравнения равновесия.

у=0                - RA+FF2+ F1 =0

RAFF2+ F1 =60-25+10=45кН.

  1. Определяем продольные силы N методом сечений. Сечение расставляем на характерных участках (между изменениями). Подсказкой может служить размерная нитка – сколько отсечено отрезков, столько будет и участков с сечениями. В нашей задаче их 6.Каждое сечение рассматриваем отдельно с любой стороны на наше усмотрение. Силу N направляем от сечения.

 

 

2016-09-04 12-42-47 Скриншот экрана

2016-09-04 12-43-33 Скриншот экрана

Строим эпюру N. Все значения откладываем перпендикулярно от нулевой линии в выбранном нами масштабе.

Положительные значения условимся откладывать вправо от нулевой линии, отрицательные — влево.

2016-09-04 12-22-12 Скриншот экрана

  1. Определяем нормальные напряжения σ в сечениях по формуле 2016-09-04 12-23-20 Скриншот экрана . Внимательно смотрим, по какой площади проходит сечение.

2016-09-04 12-25-22 Скриншот экрана

Строим эпюру σ.

2016-09-04 12-26-31 Скриншот экрана

Проверим прочность по условию прочности 2016-09-04 12-27-29 Скриншот экрана

max|= 75 МПа < [σ]=160МПа.

Прочность обеспечена.

4. Определяем перемещение бруса.

Расчет ведется от стены, в которой перемещение равно нулю ωА= 0.

Формула Гука для определения абсолютной деформации участка2016-09-04 12-30-57 Скриншот экрана

Определяем перемещения:

2016-09-04 12-32-09 Скриншот экрана

Строим эпюру перемещений ω.

2016-09-04 12-33-27 Скриншот экрана

Задача решена.

Задача на построение эпюр поперечной силы Q, изгибающего момента M и подбор сечения (проектный расчет)

Для заданной схемы консольной балки   требуется построить эпюры поперечной силы  Q и изгибающего момента M, выполнить проектировочный расчет, подобрав круглое сечение.

Материал — дерево, расчетное сопротивление материала R=10МПа, М=14кН·м,q=8кН/м2016-04-03 20-55-51 Скриншот экрана

Строить эпюры в консольной балке с жесткой заделкой можно двумя способами — обычным, предварительно определив опорные реакции, и без определения опорных реакций, если рассматривать участки, идя от свободного конца балки и отбрасывая левую часть с заделкой. Построим эпюры обычным способом.

1. Определим опорные реакции.

Равномерно распределенную нагрузку q заменим условной силой Q= q·0,84=6,72 кН

В жесткой заделке три опорные реакции — вертикальная, горизонтальная и момент, в нашем случае горизонтальная реакция равна 0.

Найдем вертикальную реакцию опоры RA  и опорный момент МA из уравнений равновесия.2016-11-19-19-46-34-skrinshot-ekrana

2. Строим эпюру поперечных сил.

На первых двух участках справа поперечная сила отсутствует. В начале участка с равномерно распределенной нагрузкой (справа) Q=0, в заделеке — величине реакции RA.2016-04-03 21-25-58 Скриншот экрана3. Для построения эпюры изгибающих моментов M составим выражения для их определения на участках. Эпюру моментов построим на растянутых волокнах, т.е. вниз. 2016-04-03 21-52-36 Скриншот экрана

4.Проектировочный расчет, то есть подбор размеров поперечного сечения.

Максимальный изгибающий момент с эпюры М=14 кН·м. Определим осевой момент сопротивления сечения

2016-04-03 21-47-30 Скриншот экрана

Таким образом, подбираем сечение с диаметром 25 см.

                                              

                                                                      

Задача на определение критической силы энергетическим методом

Определить критическую силу для стержня постоянного сечения энергетическим методом. 2015-06-14 13-49-47 Скриншот экрана Принимаем для изогнутой оси стержня уравнение параболы 2015-06-14 13-56-50 Скриншот экрана Это уравнение удовлетворяет кинематическим условиям: 2015-06-14 13-58-35 Скриншот экрана, но не удовлетворяет статическим граничным условиям, так как 2015-06-14 14-00-36 Скриншот экрана, т.е. изгибающий момент постоянен по длине стержня, тогда как на самом деле он увеличивается от концов балки к  ее середине. Вычисляя  полную потенциальную энергию стержня по формуле 2015-06-14 13-51-47 Скриншот экрана и  используя условие dФ/dC=0,найдем 2015-06-14 14-05-19 Скриншот экрана вместо точного значения2015-06-14 14-06-19 Скриншот экрана. Если энергию изгиба вычислять не по формуле 2015-06-14 14-08-40 Скриншот экрана, а по формуле 2015-06-14 14-12-03 Скриншот экрана,то получим2015-06-14 14-13-10 Скриншот экрана что лишь на 1,3% выше точного значения. (При вычислении принимаем 2015-06-14 14-16-24 Скриншот экрана )

Следует отметить, что критические силы, определяемые энергетическим методом, всегда  получаются больше действительных.

Примем теперь для изогнутой оси уравнение

2015-06-14 14-18-53 Скриншот экрана

Это уравнение удовлетворяет  и кинематическим и статическим условиям, так как на концах стержня прогибы и изгибающие моменты получаются равными нулю в соответствии с действительностью.

Вычисляем:  

2015-06-14 14-20-46 Скриншот экрана

Вычисляя  Ф по формуле 2015-06-14 13-51-47 Скриншот экрана и  используя условие  dФ/dC=0, получим 2015-06-14 14-24-28 Скриншот экранат.е. точное значение. Точное значение критической силы получилось потому, что мы задались точным выражением для изогнутой оси.

Расчет статически неопределимой балки

Статически неопределимая балка. Построить эпюры Q и M для статически неопределимой балки

2015-06-04 20-19-32 Скриншот экрана

Определим степень статической неопределимости n= Соп  — Ш — 3= 1.

Балка 1 раз статически неопределима, значит для её решения требуется 1 дополнительное уравнение.

Одна из реакций является «лишней». Для раскрытия статической неопределимости сделаем следующее: за «лишнюю» неизвестную реакцию примем реакцию опоры В. Это реакция Rb. Выбираем основную систему (ОС)  путём отбрасывания нагрузок и «лишней» связи (опоры В).  Основная система – статически определимая.

2015-06-04 20-30-12 Скриншот экрана

Теперь основную систему нужно превратить в систему, эквивалентную (равнозначную) заданной, для этого: 1) загрузим основную систему заданной нагрузкой, 2) в точке В приложим «лишнюю» реакцию  Rb. Но  этого недостаточно, поскольку в заданной системе т.В неподвижна (это опора), а в эквивалентной системе – может получать перемещения. Составим условие, по которому прогиб точки В от действия заданной нагрузки и от действия «лишней» неизвестной должен быть равен 0. Это  и будет дополнительное уравнение совместности деформаций.

Обозначим прогиб от заданной нагрузки ΔF  , а прогиб от «лишней» реакции ΔRb  .

 Тогда составим уравнение  ΔF  + ΔRb  =0   (1)

Вот теперь система стала эквивалентной заданной.

Решим уравнение (1).

Чтобы определить перемещение от заданной нагрузки ΔF   :

1)      Загружаем основную систему заданной нагрузкой.

2)      Строим грузовую эпюру 2015-06-04 20-41-53 Скриншот экрана .

3)  Снимаем все нагрузки и в точке В, где требуется определить перемещение прикладываем единичную силу. Строим эпюру единичных сил 2015-06-04 20-41-10 Скриншот экрана .

4) Определим  по формуле Симпсона перемещение от заданной нагрузки 2015-06-04 20-43-37 Скриншот экрана.

2015-06-04 20-45-43 Скриншот экрана

Построение грузовой эпюры 2015-06-04 20-41-53 Скриншот экрана:

2015-06-04 20-48-48 Скриншот экрана

Определим перемещение 2015-06-04 20-50-49 Скриншот экрана

Чтобы определить перемещение от действия «лишней» неизвестной :

1)      Загружаем основную систему «лишней» реакцией 2015-06-04 21-01-15 Скриншот экрана

2)      Строим эпюру моментов 2015-06-04 21-02-42 Скриншот экрана

2015-06-04 21-05-39 Скриншот экрана

3)      Определяем прогиб от реакции 2015-06-04 21-01-15 Скриншот экрана по формуле Симпсона,

 2015-06-04 21-03-56 Скриншот экрана  (эпюра единичных моментов уже была построена ранее)

2015-06-04 21-09-08 Скриншот экрана

Решаем уравнение (1), сокращаем на EI

2015-06-04 21-10-31 Скриншот экрана

Статическая неопределимость раскрыта, значение «лишней» реакции найдено. Можно приступать к построению эпюр Q и M для статически неопределимой балки... Зарисовываем заданную схему балки и указываем величину реакции Rb. В данной балке реакции в заделке можно не определять, если идти ходом справа.

2015-06-04 21-13-10 Скриншот экрана

Построение эпюры Q для статически неопределимой балки

2015-06-04 21-15-10 Скриншот экрана

Строим эпюру Q.

Построение эпюры М2015-06-04 21-16-36 Скриншот экрана

Определим М в точке экстремума – в точке К. Сначала определим её положение. Обозначим расстояние до неё как неизвестное «х». Тогда

2015-06-04 21-18-28 Скриншот экрана

Тогда  2015-06-04 21-20-15 Скриншот экрана

Строим эпюру М.

Задача решена.

Построение эпюры касательных напряжений для двутавра

Определение касательных напряжений в двутавровом сечении. Рассмотрим сечение двутавра. Sx=96,9 см3; Yх=2030 см4; Q=200 кН

2015-05-12 22-08-21 Скриншот экрана

Для определения касательного напряжения применяется формула Д.И. Журавского2015-05-12 21-33-12 Скриншот экрана ,где Q — поперечная сила в сечении, Sx0 – статический момент части поперечного сечения, расположенной по одну сторону от слоя, в котором определяются касательные напряжения, Ix – момент инерции всего поперечного сечения, b – ширина сечения в том месте, где определяется касательное напряжение

Вычислим максимальное касательное напряжение:2015-05-12 22-10-29 Скриншот экрана

Вычислим статический момент для верхней полки:2015-05-12 22-11-19 Скриншот экрана2015-05-12 22-12-04 Скриншот экрана

Теперь вычислим касательные напряжения:2015-05-12 23-25-09 Скриншот экрана

Строим эпюру касательных напряжений:

Касательные напряжения в балке двутаврового сечения

Касательные напряжения в балке двутаврового сечения