Архив рубрики: Устойчивость

Энергетический метод определения критических нагрузок

При решении многих задач устойчивости, особенно сложных, весьма эффективными являются энергетические методы.    При достижении сжимающей силой критического значения стержень может немного изогнуться.    Примем для определенности, что Ix< Iy, тогда стержень изогнётся в плоскости чертежа.

2015-04-09 23-16-43 Скриншот экрана

При этом внешней силой Fкр будет совершена работа, которая перейдет в потенциальную энергию изгиба стержня. Энергия изгиба стержня определяется по формуле:

2015-04-09 23-14-28 Скриншот экрана или 2015-04-09 23-15-24 Скриншот экранатак как2015-04-09 23-16-06 Скриншот экрана

  Работа сжимающей силы равна:

2015-04-09 23-17-26 Скриншот экрана ,где λ- перемещение точки приложения силы Fкр.

При вычислении работы W множитель ½ отсутствует, поскольку потеря устойчивости характеризуется именно тем, что форма равновесия меняется при постоянной величине внешних сил.  Перемещение λ может быть определено как разность между длиной l и проекцией изогнутой оси стержня на прямую, соединяющую опоры.

Из рисунка видно, что 2015-04-09 23-19-29 Скриншот экрана

По малости деформаций принимается  2015-04-09 23-19-59 Скриншот экрана

Поэтому   2015-04-09 23-20-35 Скриншот экрана

Потенциальная энергия сжимающей силы равна:       2015-04-09 23-21-17 Скриншот экрана

Полная потенциальная энергия стержня:   2015-04-09 23-21-49 Скриншот экрана  или

2015-04-09 23-22-27 Скриншот экрана

Теперь приведём  одну из важнейших теорем механики деформируемого тела, на которой основан эффективнейший и весьма общий метод решения разнообразных технических задач, в частности задач об устойчивости упругих форм равновесия.

Это теорема Лагранжа-Дирихле. Из всех перемещений, удовлетворяющих заданным граничным условиям, те перемещения, которые удовлетворяют условиям устойчивого равновесия, придают полной потенциальной энергии системы минимальное значение.  Эта теорема предоставляет в наше распоряжение необходимое число уравнений вида 2015-04-09 23-23-09 Скриншот экрана,  что дает возможность решать задачи со многими неизвестными параметрами Хi.

Теорема справедлива как для линейно-деформируемых, так и для нелинейно-деформируемых систем.  Задаваясь той или иной подходящей функцией y, удовлетворяющей заданным граничным условиям, можно приближённо определить величину критической силы.

При выборе функции  y, кинематические граничные условия (прогибы, углы поворота сечений) должны быть удовлетворены обязательно. Статическим граничным условиям (изгибающим моментам, поперечным силам) удовлетворять необязательно, однако для получения более точных результатов – крайне желательно.

 

 

Устойчивость сжатых стержней

Продольный изгиб 

При расчетах на прочность подразумевалось, что равновесие конструкции под действием внешних сил является устойчивым. Однако выход конструкции из строя может произойти  из-за того, что равновесие конструкций в силу тех или иных причин окажется неустойчивым. Во многих случаях, кроме проверки прочности, необходимо производить еще проверку устойчивости элементов конструкций.

Состояние равновесия считается устойчивым, если при любом возможном отклонении системы от положения равновесия возникают силы, стремящиеся вернуть её в первоначальное положение. 

Рассмотрим известные виды равновесия.

2014-09-24 21-22-05 Скриншот экрана

Неустойчивое равновесное состояние будет в том случае, когда хотя бы при одном из возможных отклонений системы от положения равновесия возникнут силы, стремящиеся удалить её от начального положения.

Состояние равновесия будет безразличным, если при разных отклонениях системы от положения равновесия возникают силы, стремящиеся вернуть её в начальное положение, но хотя бы при одном из возможных отклонений система продолжает оставаться в равновесии при отсутствии сил, стремящихся вернуть её в начальное положение или удалить от этого положения.

При потере устойчивости характер работы конструкции меняется, так как этот вид деформации переходит в другой, более опасный, способный привести её к разрушению при нагрузке значительно меньшей, чем это следовало из расчета на прочность. Очень существенно, что потеря устойчивости сопровождается нарастанием больших деформаций, поэтому явление это носит характер катастрофичности.

При переходе от устойчивого равновесного состояния к неустойчивому конструкция проходит через состояние безразличного равновесия. Если находящейся в этом состоянии конструкции сообщить некоторое небольшое отклонение от начального положения, то по прекращении действия причины, вызвавшей это отклонение, конструкция в исходное положение уже не вернется, но будет способна сохранить приданное ей, благодаря отклонению, новое положение.

Состояние безразличного равновесия, представляющее как бы границу между двумя основными состояниями – устойчивым и неустойчивым, называется критическим состоянием. Нагрузка, при которой конструкция сохраняет состояние безразличного равновесия, называется критической нагрузкой.

Эксперименты показывают, что обычно достаточно немного увеличить нагрузку по сравнению с её критическим значением, чтобы конструкция из-за больших деформаций потеряла свою несущую способность, вышла из строя. В строительной технике потеря устойчивости даже одним элементом конструкции вызывает перераспределение усилий во всей конструкции и нередко влечет к аварии.

Изгиб стержня,связанный с потерей устойчивости, называется продольным изгибом.

Критическая сила. Критическое напряжение

Наименьшая величина сжимающей силы, при которой первоначальная форма равновесия стержня – прямолинейная становится неустойчивой – искривленной, называется критической.

При исследовании устойчивости форм равновесия упругих  систем первые шаги были сделаны Эйлером.

В упругой стадии деформирования стержня при напряжениях, не превышающих предел пропорциональности, критическая сила вычисляется по формуле Эйлера:2014-09-24 19-33-11 Скриншот экрана

где Iminминимальный момент инерции сечения стержня (обусловлено тем, что изгиб стержня происходит в плоскости с наименьшей жесткостью), однако исключения могут быть только в случаях, когда условия закрепления концов стержня различны в разных плоскостях,  - геометрическая длина стержня, μ – коэффициент приведенной длины или коэффициент приведения (зависит от способов закрепления концов стержня), Значения μ приведены под соответствующей схемой  закрепления стержней 2014-09-24 18-35-58 Скриншот экрана

Критическое напряжение вычисляется следующим образом

2014-09-24 21-43-22 Скриншот экрана, где 2014-09-24 18-32-05 Скриншот экрана гибкость стержня  ,

а 2014-09-24 18-38-22 Скриншот экрана радиус инерции сечения.

Введем понятие предельной гибкости.

Величина λпред зависит только от вида материала: 2014-09-24 19-35-04 Скриншот экрана

Если у стали 3  Е=2∙1011Па, а σпц=200МПа, то предельная гибкость

2014-09-24 19-36-51 Скриншот экрана

Для дерева (сосна, ель) предельная гибкость λпред=70, для чугуна λпред=80

Таким образом, для стержней большой гибкости λ≥λпред критическая сила определяется по формуле Эйлера.

В упругопластической стадии деформирования стержня, когда значение гибкости находится в диапазоне λ0≤λ≤λпр, (стержни средней гибкости) расчет  проводится по эмпирическим формулам, например, можно использовать формулу Ясинского Ф.С. Значения введенных в нее параметров определены эмпирически для каждого материала.

σк=а-bλ,               или               Fкр= A(abλ)   

где a и  b – постоянные, определяемые экспериментальным путем (эмпирические коэффициенты).Так, для стали3  а=310МПа, b=1,14МПа.

При значениях гибкости стержня 0≤λ≤λ0 (стержни малой гибкости) потеря устойчивости не наблюдается.

Таким образом, пределы применимости формулы Эйлера — применяется только в зоне упругих деформаций.

Условие устойчивости. Типы задач при расчете на устойчивость. Коэффициент продольного изгиба

Условием устойчивости сжатого стержня является неравенство:

2014-09-24 18-23-07 Скриншот экрана

Здесь допускаемое напряжение по устойчивости [σуст] — не постоянная величина, как это было в условиях прочности, а зависящая от следующих факторов:

1)    от длины стержня, от размеров и даже от формы поперечных сечений,

2)    от способа закрепления концов стержня,

3)    от материала стержня.

Как и всякая допускаемая величина, уст] определяется отношением опасного для сжатого стержня напряжения к коэффициенту запаса. Для сжатого стержня опасным является так называемое критическое напряжение σкр, при котором стержень теряет устойчивость первоначальной формы равновесия.

Поэтому 2014-09-24 18-25-33 Скриншот экрана

Величину коэффициента запаса в задачах устойчивости принимают несколько большей, чем значение коэффициента запаса прочности, то есть если k=1÷2, то kуст=2÷5.

Допускаемое напряжение по устойчивости можно связать с допускаемым напряжением по прочности:2014-09-24 18-27-07 Скриншот экрана

В этом случае 2014-09-24 18-28-45 Скриншот экрана,

где σт – опасное с точки зрения прочности напряжение (для пластичных материалов это предел текучести, а для хрупких – предел прочности на сжатие σвс).

Коэффициент φ<1 и потому называется коэффициентом снижения основного допускаемого напряжения, то есть [σ] по прочности,  или иначе коэффициентом продольного изгиба.

С учетом сказанного условие устойчивости сжатого стержня принимает вид:

2014-09-24 18-30-56 Скриншот экрана

Численные значения коэффициента φ выбираются из таблиц в зависимости от материала и величины гибкости стержня 2014-09-24 18-32-05 Скриншот экрана, где:

μ – коэффициент приведенной длины (зависит от способов закрепления концов стержня),  - геометрическая длина стержня,

i – радиус инерции поперечного сечения 2014-09-24 18-38-22 Скриншот экрана относительно той из главных центральных осей сечения, вокруг которой будет происходить поворот поперечных сечений после достижения нагрузкой критического значения.

Коэффициент φ изменяется в диапазоне 0≤φ≤1, зависит ,как уже говорилось,  как от физико-механических свойств материала, так и от гибкости λ. Зависимости между φ и λ для различных материалов представляются обычно в табличной форме с шагом ∆λ=10.

При вычислении значений φ для стержней, имеющих значения гибкости не кратные числу 10, применяется правило линейной интерполяции.

Значения коэффициента φ в зависимости от гибкости λ для материалов

2014-09-24 18-42-23 Скриншот экрана

На основании условия устойчивости решаются три вида задач:

  1. Проверка устойчивости.
  2. Подбор сечения.
  3. Определение допускаемой нагрузки (или безопасной нагрузки, или грузоподъемности стержня: [F]=φ[σ]А.

Наиболее сложным оказывается решение задачи о подборе сечения, поскольку необходимая величина площади сечения входит и в левую, и в правую часть условия устойчивости:

2014-09-24 18-44-39 Скриншот экрана

Только в правой части этого неравенства площадь сечения находится в неявном виде: она входит в формулу радиуса инерции 2014-09-24 18-38-22 Скриншот экрана, который в свою очередь включен в формулу гибкости 2014-09-24 18-32-05 Скриншот экрана, от которой зависит значение коэффициента продольного изгиба φ. Поэтому здесь приходится использовать метод проб и ошибок, облеченный в форму способа последовательных приближений:

1 попытка: задаемся φ1 из средней зоны таблицы, находим 2014-09-24 18-47-43 Скриншот экрана , определяем размеры сечения, вычисляем 2014-09-24 18-38-22 Скриншот экрана , затем гибкость 2014-09-24 18-32-05 Скриншот экрана , по таблице определяем 2014-09-24 18-49-13 Скриншот экрана и сравниваем со значением φ1 . Если 2014-09-24 18-50-12 Скриншот экрана , то:

2 попытка: принимаем 2014-09-24 18-54-51 Скриншот экрана , находим  2014-09-24 18-55-28 Скриншот экрана, определяем размеры сечения, вычисляем 2014-09-24 18-38-22 Скриншот экрана , затем гибкость 2014-09-24 18-32-05 Скриншот экрана , по таблице определяем 2014-09-24 18-56-29 Скриншот экрана, и если 2014-09-24 18-57-09 Скриншот экрана , то:

3 попытка: принимаем 2014-09-24 18-58-17 Скриншот экрана , находим 2014-09-24 18-58-53 Скриншот экрана , определяем размеры сечения, вычисляем 2014-09-24 18-38-22 Скриншот экрана, затем гибкость 2014-09-24 18-32-05 Скриншот экрана , по таблице определяем 2014-09-24 19-00-09 Скриншот экрана, и т.д.

Процесс приближений продолжается до тех пор, пока разница  не окажется менее 5%.