Архив рубрики: Внутренние силы. Метод сечений

Внутренние силы. Метод сечений

2014-08-31 23-58-01 Скриншот экранаСилы, как известно, бывают внешние и внутренние. Если взять в руки обычную ученическую линейку и изогнуть ее, то делаем мы это, прикладывая внешние силы – руки. Если усилие рук убрать, то линейка вернется в исходное положение самостоятельно, под воздействием своих внутренних сил (это силы взаимодействия между частицами элемента от воздействия внешних сил). Чем больше внешние силы, тем больше и внутренние, но внутренние не могут постоянно увеличиваться, они растут лишь до определенного предела, и когда внешние силы превысят внутренние, произойдет разрушение. Поэтому крайне важно знать о внутренних силах в материале с точки зрения его прочности. Внутренние силы определяются с помощью метода сечений. Рассмотрим его подробно. Допустим, стержень нагружен  некоторыми силами (верхний левый рис.). Разрезаем стержень сечением 1–1 на две части, и будем рассматривать любую из них – ту, которая покажется нам проще. К примеру, отбрасываем правую часть и рассмотрим равновесие левой части (верхний правый рис.).

Действие отброшенной правой части на оставшуюся левую заменяем внутренними силами, их бесконечно много, так как это силы взаимодействия между частицами тела. Из теоретической механики известно, что любую систему сил можно заменить эквивалентной ей системой, состоящей из главного вектора и главного момента. Поэтому все внутренние силы приведем к главному вектору R и главному моменту М (рис.1.1,б). Поскольку наше пространство трехмерно, то главный вектор R можно разложить по осям координат и получить три силы — Qx, Qy, Nz(рис.1.1,в). По отношению к продольной оси стержня силы Qx, Qyназываются поперечными или перерезывающими силами (расположены поперек оси),  Nzполучил название продольной силы (расположена вдоль оси).

Главный момент М при разложении по осям координат также даст три момента(рис.1.1,г) в соответствии с той же продольной осью  — два изгибающих момента Mx и My и крутящий момент Т (может обозначаться как Мк   или Мz).

Таким образом, в общем случае нагружения существует  шесть компонентов внутренних сил, которые называются внутренними силовыми факторами или внутренними силами. Для их определения в случае пространственной системы сил составляются шесть уравнений равновесия,  а в случае плоской – три.

Чтобы запомнить последовательность метода сечений, следует использовать мнемотехнический прием – запомнить слово РОЗУ из первых букв действий: Разрезаем (сечением), Отбрасываем (одну из частей), Заменяем (действие отброшенной части внутренними силами), Уравновешиваем (т.е. с помощью уравнений равновесия определяем значение внутренних сил).

В практике возникают следующие виды деформаций. Если при случае нагружения в элементе под действием сил возникает один внутренний силовой фактор, то такая деформация называется простой или основной. Простые деформации -  это растяжение-сжатие (возникает продольная сила), сдвиг (поперечная сила), изгиб (изгибающий момент), кручение (крутящий момент). Если одновременно элемент испытывает несколько деформаций (кручение с изгибом, изгиб с растяжением и др.), то такая  деформация называется сложной.