Вопрос про крутящий момент

Зависит ли результат определения крутящего момента от того, какую часть тела мысленно отбрасывают?

Результат определения крутящего момента не зависит от того, какую часть тела мысленно отбрасывают. Применяя метод сечений, можно отбрасывать любую часть вала.

Более подробно об определении крутящих моментов — здесь.

 

Вопрос про крутящие и вращающие моменты

Чем отличаются крутящие моменты от моментов вращающих? 

Моменты внутренних сил относительно оси вращения принято называть крутящими моментами.

Моменты внешних сил относительно оси вращения принято называть вращающими моментами.

Более подробно о вращающих и крутящих моментах -здесь.

Понятие о вращающих и крутящих моментах

Часто в прикладных задачах механики прихо­дится определять моменты сил, приложенных к телу, относительно его оси. Покажем, что в сечениях тела под действием внешних сил всегда возникают внутренние силы.

Рассмотрим устройство для подъема грузов, состоящее из вала ABC, на который насажены барабан АВ с радиусом r и зубчатое колесо С с радиусом R.

2016-09-21-21-54-23-skrinshot-ekrana

Вал при­водится во вращение от электродвигателя D через зубчатую передачу. Вес поднимаемого груза Q передается через трос на обод барабана, а от шестерни K, насаженной на вал электродвигателя, передается движущая сила Р.

При равномерном подъеме груза моменты внешних сил, прило­женных к валу, должны уравновешиваться, т. е.

2016-09-21-21-42-32-skrinshot-ekrana

Реакции опор А и В не войдут в уравнение моментов, так как они пересекают ось z и, следовательно, не создают относительно этой оси моментов.

Из составленного уравнения равновесия следует, что PR = Qr или М(Р) = М(Q), т. е. на концы участка вала, расположенного между сечением приложения груза Q и зубчатым колесом С, действуют равные и проти­воположно направленные моменты внешних сил. Эти мо­менты называют вращающими моментами.

Участок вала между сечениями приложения вращаю­щих моментов, как уже отмечалось, находится в равно­весии. Естественно, что любая часть, мысленно отсеченная от этого вала, также должна быть в равновесии. На рисунке внизу проведено сечение Е.

2016-09-21-21-52-17-skrinshot-ekrana

Чтобы отсеченная часть ЕС находилась в равновесии, в сечении Е должен действовать какой-то момент, равный и противоположный по направле­нию вращающему моменту, приложенному к колесу С. Этот момент называется крутящим (его обозначают Мк ) и является моментом внутренних сил, возникающих в се­чении тела.

Использованный здесь метод установления внутрен­них сил в сечении вала называется методом сечений (более подробно о методе сечений — см. здесь).

Момент внутренних сил в сечении —крутящий мо­мент— равен алгебраической сумме моментов внешних сил, т. е. вращающих моментов, приложенных к отсечен­ной части вала:

2016-09-21-22-27-59-skrinshot-ekrana,

где n — число вращающих моментов, приложенных к от­сеченной части рассматриваемого вала.

Знак крутящего момента в поперечном сечении вала можно установить, исходя из направления внешних вра­щающих моментов. Условимся считать крутящий момент положительным, когда внешние моменты, приложенные к валу, вращают отсеченную часть по часовой стрелке (если смотреть со стороны внешней нормали к проведенному се­чению). На рассматриваемом рисунке сила Р вызывает вращение отброшенной части вала против часовой стрелки, если смотреть со стороны внешней нормали на проведенное сечение Е. Таким образом, в рассмотренном сечении Е возникает отрицательный крутящий момент.

При возрастании веса поднимаемого груза соответственно увеличиваются вращающие моменты. Будут возрастать также крутящие мо­менты в сечениях вала. Очевидно, что при данных размерах вала нельзя допускать безграничного возрастания вращаю­щего, а следовательно, и крутящего моментов, так как вал может разрушиться или сильно деформироваться. По­этому определение крутящих моментов имеет очень боль­шое практическое значение для расчетов на прочность.

Равновесие рычага

Во многих задачах механики приходится рассматри­вать равновесие тела, шарнирно закрепленного на неко­торой неподвижной оси. Такое тело называют рычагом.

Рычаг обладает способностью вращаться вокруг оси закрепления (рис. а).

2016-09-17-18-38-58-skrinshot-ekrana

Равновесие рычага будет обеспе­чено только в   том случае, когда алгебраическая сумма моментов          всех      действующих на рычаг сил      относительно его неподвижной точки равна нулю.

Неподвижной точкой рычага, относительно которой мы будем составлять урав­нение моментов, является точка пересечения оси враще­ния рычага с плоскостью чертежа (рис.а)

2016-09-17-18-44-54-skrinshot-ekrana

или

2016-09-17-18-47-55-skrinshot-ekrana

Рычаг можно использовать для подъема грузов, для создания больших давлений с помощью небольшого уси­лия и т. п. Рычаги двух видов показаны на рис.б и в.

2016-09-17-18-49-48-skrinshot-ekrana

2016-09-17-18-51-03-skrinshot-ekrana

Задача про момент силы относительно оси

Определите момент силы Р относительно оси z (рис. 42).

2016-09-16-12-27-05-skrinshot-ekrana

На рисунке показаны две составляющие силы Р — это силы Р1  и Р2 . Составляющая Р2 параллельна оси Оz, поэтому ее момент относительно этой оси равен нулю. Составляющая Рдаст момент относительно оси Оz с отрицательным знаком (правило знаков см — здесь). Плечо относительно оси Оz будет равняться половине диаметра D1.

Таким образом,

2016-09-16-12-38-47-skrinshot-ekrana

Вопрос про момент силы относительно оси

Когда момент силы относительно оси равен нулю?

Момент силы относительно оси равен нулю,  когда сила и ось расположены в одной плоскости. Когда сила и ось расположены в одной плоскости, то могут быть два случая:

1) сила параллельна оси;

2) линия действия силы пересекает ось.

И в том, и в другом случае момент силы относительно оси равен нулю.

Момент силы относительно оси

Рассмотрим, как определяется момент силы относи­тельно оси. Стремление силы вращать тело вокруг непо­движной оси зависит от величины силы, ее наклона и расстояния от оси.

Из опыта известно, что силы, про­ходящие через ось, и силы, параллель­ные оси, НЕ МОГУТ ВЫЗВАТЬ ВРАЩЕНИЯ ТЕЛА вокруг этой оси. Посмотрим на рисунок.

2016-09-16-11-33-45-skrinshot-ekrana

Ни сила Р1, линия действия которой пересекает ось Oz, ни сила Р2, параллельная оси, не смогут повернуть тело вокруг этой оси.

Для вращательного эффекта силы относительно закрепленной оси вводит­ся понятие момента силы относительно оси М(Р). Вращательный эффект силы относительно оси и выражается ее мо­ментом.

Пусть на тело в какой-то точке  действует произ­вольная сила Р, не параллельная оси вращения Oz и не пересекающая эту ось. Проведем плоскость H, перпендикулярную оси Oz и проходящую через начало вектора силы. Разложим заданную силу Р на две составляющие: Р1, расположенную в плоскости H, и Р2, параллель­ную оси Oz.

2016-09-16-11-41-45-skrinshot-ekrana

Составляющая Р2, параллельная оси Oz момента относительно этой оси не создает. Составляющая Р1, действующая в плоскости H, создает момент относительно оси Oz или, что то же самое, относительно точки О. Мо­мент силы Р1 измеряется произведением модуля самой силы на длину а перпендикуляра, опущенного из точки О на направление этой силы, т. е.

2016-09-16-11-50-43-skrinshot-ekrana

В выражение момента силы относительно оси входит не вся сила, а только ее составляющая, лежащая в пло­скости, перпендикулярной оси вращения.

Знак момента по общему правилу определяется на­правлением вращения тела: (+) при движении по часовой стрелке, (—) при движении против часовой стрелки (правило условно). При определении знака момента наблюдатель должен непре­менно находиться со стороны положительного направле­ния оси. На рисунке вверху момент силы Р относительно оси Oz положителен, так как для наблюдателя, смотрящего со стороны положительного направления оси (сверху), тело под действием заданной силы представляется вращаю­щимся вокруг оси по ходу часовой стрелки.

На рисунке внизу  момент силы Р относительно оси Oz — величина отрица­тельная.

2016-09-16-12-06-03-skrinshot-ekrana

Рассмотрим частный случай.

2016-09-16-12-09-13-skrinshot-ekrana

В частном случае мо­мент силы Р, расположенной в плоско­сти H, относительно оси Oz, перпендикулярной этой плоскости, определится произведением полной ве­личины силы Р на ее пле­чо l относительно точки пересечения оси Oz и плос­кости H

2016-09-16-12-11-25-skrinshot-ekrana

Итак, для определения момента силы относительно оси нужно спроектировать силу на плоскость, перпенди­кулярную оси, и найти момент проекции силы на плоскость относительно точки пересечения оси с этой плоскостью.

Задача

Для балки с жесткой заделкой построить эпюры Q и М. 

2016-09-13-21-29-06-skrinshot-ekrana

Расставляем сечения от свободного конца балки — в этом случае можно построить эпюры, не определяя опорных реакций. Рассматривать в каждом случае будем правую часть — справа от сечения. Сечения расставляем на характерных участках (между изменениями). По размерной нитке – 2 участка, 2 сечения.

2016-09-13-21-35-39-skrinshot-ekrana

Сечение 2-2 проходит по участку с равномерно распределенной нагрузкой, отмечаем размер z2 вправо от сечения до начала участка. Определяем поперечные силы в сечениях. Правило знаков см. — здесь.

2016-09-13-21-38-09-skrinshot-ekrana

Строим эпюру Q.

2016-09-13-21-44-36-skrinshot-ekrana

Построим эпюру М методом характерных точек. Расставляем точки на балке — это точки начала и конца балки (D,A), сосредоточенного момента (B), а также отметим в качестве характерной точки середину равномерно распределенной нагрузки (K) — это дополнительная точка для построения параболической кривой.

2016-09-13-21-45-51-skrinshot-ekrana

Определяем изгибающие моменты в точках. Правило знаков см. — здесь.

2016-09-13-21-48-19-skrinshot-ekrana

Момент в т. В будем определять следующим образом. Сначала определим:

2016-09-13-21-49-16-skrinshot-ekrana

Теперь:

2016-09-13-21-50-11-skrinshot-ekrana

Точку К возьмем в середине участка с равномерно распределенной нагрузкой.

2016-09-13-21-51-16-skrinshot-ekrana

Строим эпюру M. Участок АВпараболическая кривая (правило «зонтика»), участок ВDпрямая наклонная линия.

2016-09-13-21-53-26-skrinshot-ekrana

Задача на построение эпюр Q и M в балке

Для балки определить  опорные реакции и построить эпюры изгибающих моментов (М) и поперечных сил (Q).

2016-09-11-11-11-20-skrinshot-ekrana

  1. Обозначаем опоры буквами А и В и направляем опорные реакции RА и RВ.

2016-09-11-11-15-02-skrinshot-ekrana

Составляем уравнения равновесия.

2016-09-11-11-05-44-skrinshot-ekrana

Проверка

2016-09-11-11-16-10-skrinshot-ekrana

Записываем значения RА и RВ на расчетную схему.

2. Построение эпюры поперечных сил методом сечений. Сечения расставляем на характерных участках (между изменениями). По размерной нитке – 4 участка, 4 сечения.

2016-09-11-11-21-02-skrinshot-ekrana

сеч. 1-1   ход слева.

Сечение проходит по участку с равномерно распределенной нагрузкой, отмечаем размер z1 влево от сечения до начала участка. Длина участка 2 м. Правило знаков для Q — см. здесь.

2016-09-11-11-23-08-skrinshot-ekrana

Строим по найденным значением эпюру Q.

сеч. 2-2   ход справа.

Сечение вновь проходит по участку равномерно распределенной нагрузкой, отмечаем размер z вправо от сечения до начала участка. Длина участка 6 м.

2016-09-11-12-13-12-skrinshot-ekrana

Строим эпюру Q.

сеч. 3-3   ход справа.

2016-09-11-11-31-25-skrinshot-ekrana

сеч. 4-4   ход справа.

2016-09-11-11-32-25-skrinshot-ekrana

Строим эпюру Q.

2016-09-11-11-34-19-skrinshot-ekrana

3. Построение эпюры М методом характерных точек.

Характерная точка – точка, сколь-либо заметная на балке. Это точки А, В, С, D, а также точка К, в которой Q=0 и изгибающий момент имеет экстремум. Также в середине консоли поставим дополнительную точку Е, поскольку на этом участке под равномерно распределенной нагрузкой эпюра М описывается кривой линией, а она строится, как минимум, по 3 точкам.

2016-09-11-11-38-47-skrinshot-ekrana

Итак, точки расставлены, приступаем к определению в них  значений изгибающих моментов. Правило знаков — см. здесь.

Участки NA, ADпараболическая кривая (правило «зонтика» у механических специальностей или «правило паруса» у строительных ), участки DС, СВпрямые наклонные линии.

2016-09-11-11-43-05-skrinshot-ekrana

Момент в точке D следует определять как слева, так и справа от точки D. Сам момент в эти выражения не входит. В точке D получим два значения с разницей на величину mскачок на его величину.

2016-09-11-11-44-18-skrinshot-ekrana

Теперь следует определить момент в точке К (Q=0). Однако сначала определим положение точки К, обозначив расстояние от нее до начала участка неизвестным х.

2016-09-11-11-46-32-skrinshot-ekrana

Т. К принадлежит второму характерному участку, его уравнение для поперечной силы (см. выше)

2016-09-11-11-47-50-skrinshot-ekrana

Но поперечная сила в т. К равна 0, а z2 равняется неизвестному х.

Получаем уравнение:

2016-09-11-11-48-52-skrinshot-ekrana

Теперь, зная х, определим  момент в точке К с правой стороны.

2016-09-11-12-07-29-skrinshot-ekrana

Строим эпюру М. Построение выполним для механических специальностей, откладывая положительные значения вверх от нулевой линии и используя правило «зонтика».

2016-09-11-12-09-52-skrinshot-ekrana

Задача

Определить главные центральные моменты инерции, осевые моменты сопротивления  сечения, составленного из стандартных профилей проката.

Сечение состоит из двух неравнополочных уголков 75×50х5 (маркировка в мм) и швеллера № 16 (№ швеллера говорит о его высоте в см).

2016-09-08-20-28-30-skrinshot-ekrana

  1. Определим положение центра тяжести сечения.

Сечение симметрично относительно оси у, проводим её как ось – главную и центральную. Координата хС=0. Для нахождения уС проводим случайную ось х (выбранную случайным образом). Обозначим центры тяжести всех профилей и выпишем необходимые характеристики профилей из сортамента прокатной стали.

Фигуры 1,2 – уголки 75×50х5

2016-09-08-20-30-55-skrinshot-ekrana

А1=А2=6,11 см2

Iх1= Iх2=34,8 см4

Iу1= Iу2=12,5 см4

Фигура 3 – швеллер №16

2016-09-08-20-32-08-skrinshot-ekrana

А3=18,1 см2,    

Iх3=747 см4

Iу3=63,3 см4.

Покажем на схеме и определим координаты у для профилей

ууу=2,39 см,

у1= -z=-1,8 см.

Определим координату уС по формуле

 2016-09-06 20-26-28 Скриншот экрана,

где Аiплощадь каждого профиля,

      уi – координата.

2016-09-08-20-35-07-skrinshot-ekrana

Проводим главную центральную ось х вниз от оси х′ на 0,11 см, наносим т.С – центр тяжести всего сечения.

2. Определяем главные центральные моменты инерции по формулам перехода:

2016-09-06 20-36-54 Скриншот экрана,

где Ixi , Iyi моменты инерции каждой фигуры;

Аi площадь сечения каждой фигуры;

аi – расстояние от центра тяжести каждой фигуры до главной центральной оси х;

bi – расстояние от центра тяжести каждой фигуры до главной центральной оси у.

Определяем аi (смотрим схему)

аау1+|уС|= 2,39 + 0,11 = 2,5см,

а3= — (|у3|-|уС|) = -1,69см.

Определяем Iх. Следует обратить внимание на то, что фигура 3 – швеллер – повернут, поэтому, для определения Iх следует из сортамента взять Iу швеллера.

Iх3=63,3см4

2016-09-08-20-40-40-skrinshot-ekrana

Определяем Iу.  Для швеллера (повернут)  Iу3  Iх = 747см4.

Определим размеры bi, показываем на схеме.

b1= -х0 = -1,17см,

b2= х0 = 1,17см,

b3=0, т.к. центр тяжести швеллера лежит на оси у.

2016-09-08-20-42-24-skrinshot-ekrana3. Определим осевые моменты сопротивления сечения по формулам:

2016-09-08-20-44-11-skrinshot-ekrana

Из схемы видно ,что

2016-09-08-20-44-50-skrinshot-ekrana

Тогда

2016-09-08-20-46-18-skrinshot-ekrana